Skip to main content

Advertisement

Log in

Revealing the Intrinsic Nanohardness of Lath Martensite in Low Carbon Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The mechanical property of martensite blocks in low carbon steel is studied by nanoindentation combined with scanning electron microscopy, electron backscattered diffraction, and transmission electron microscopy. The average nanohardnesses of small and large martensite blocks are 6.9 and 5.4 GPa, respectively. A size effect that the smaller is stronger is thus observed. This size effect was ascribed to the different formation sequence of martensite blocks during quenching. Therefore, the present work suggests that the as-quenched martensite may be considered as a composite material with the small but strong martensite blocks embedded in the large but soft martensite block matrix, which is important information for modeling the tensile stress–strain behavior of martensitic steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Qi, A.G. Khachaturyan, and J.W. Morris: Acta Mater., 2014, vol. 76, pp. 23–39.

    Article  Google Scholar 

  2. X.C. Xiong, B. Chen, M.X. Huang, J.F. Wang, and L. Wang: Scripta Mater., 2013, vol. 68, pp. 321–24.

    Article  Google Scholar 

  3. J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth: Acta Mater., 2003, vol. 51, pp. 2611–22.

    Article  Google Scholar 

  4. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki: Acta Mater., 2003, vol. 51, pp. 1789–99.

    Article  Google Scholar 

  5. S. Morito, X. Huang, T. Furuhara, T. Maki, and N. Hansen: Acta Mater., 2006, vol. 54, pp. 5323–31.

    Article  Google Scholar 

  6. S. Morito, H. Yoshida, T. Maki, and X. Huang: Mater. Sci. Eng. A, 2006, vol. 438, pp. 237–40.

    Article  Google Scholar 

  7. T. Ohmura, K. Tsuzaki, and S. Matsuoka: Scripta Mater., 2001, vol. 45, pp. 889–94.

    Article  Google Scholar 

  8. B.B. He, K. Zhu, and M.X. Huang: Philos. Mag. Lett., 2014, pp. 1–8.

  9. C. Ohlund, E. Schlangen, and S.E. Offerman: Mater. Sci. Eng. A, 2013, vol. 560, pp. 351–57.

    Article  Google Scholar 

  10. T. Ohmura, K. Tsuzaki, and S. Matsuoka: Philos. Mag. A, 2002, vol. 82, pp. 1903–10.

    Google Scholar 

  11. T. Ohmura, T. Hara, and K. Tsuzaki: Scripta Mater., 2003, vol. 49, pp. 1157–62.

    Article  Google Scholar 

  12. T. Ohmura, T. Hara, and K. Tsuzaki: J. Mater. Res., 2003, vol. 18, pp. 1465–70.

    Article  Google Scholar 

  13. T. Ohmura, A.M. Minor, E.A. Stach, and J. W. Morris: J. Mater. Res., 2004, vol. 19, pp. 3626–32.

    Article  Google Scholar 

  14. B.B. He, W. Xu, and M.X. Huang: Mater. Sci. Eng. A, 2014, vol. 609, pp. 141–46.

    Article  Google Scholar 

  15. W.C. Oliver and G.M. Pharr: J. Mater. Res., 1992, vol. 7, pp. 1564–83.

    Article  Google Scholar 

  16. Y.C. Liu, F. Sommer, and E.J. Mittemeijer: Acta Mater., 2003, vol. 51, pp. 507–19.

    Article  Google Scholar 

  17. T.A. Kop, J. Sietsma, and S. Van Der Zwaag: J. Mater. Sci., 2001, vol. 36, pp. 519–26.

    Article  Google Scholar 

  18. H.K.D.H. Bhadeshia and R. Honeycombe: Steels: Microstructure and Properties, 3rd ed., Butterworth-Heinemann, Oxford, United Kingdom, 2006.

    Google Scholar 

  19. H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino: Acta Mater., 2006, vol. 54, pp. 1279–88.

    Article  Google Scholar 

  20. B.B. He, M.X. Huang, A.H.W. Ngan, and S. Van Der Zwaag: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4875–81.

    Article  Google Scholar 

  21. K.L. Johnson: Contact Mechanics, Cambridge University Press, Cambridge, United Kingdom, 1985.

    Book  Google Scholar 

  22. S. Shim, H. Bei, E.P. George, and G.M. Pharr: Scripta Mater., 2008, vol. 59, pp. 1095–98.

    Article  Google Scholar 

  23. F. Lani, Q. Furnémont, T. Van Rompaey, F. Delannay, P.J. Jacques, and T. Pardoen: Acta Mater., 2007, vol. 55, pp. 3695–3705.

    Article  Google Scholar 

  24. A. Barnoush: Acta Mater., 2012, vol. 60, pp. 1268–77.

    Article  Google Scholar 

  25. G. Miyamoto, A. Shibata, T. Maki, and T. Furuhara: Acta Mater., 2009, vol. 57, pp. 1120–31.

    Article  Google Scholar 

  26. K. Durst, B. Backes, O. Franke, and M. Göken: Acta Mater., 2006, vol. 54, pp. 2547–55.

    Article  Google Scholar 

  27. S. Morito, H. Saito, T. Ogawa, T. Furuhara, and T. Maki: ISIJ Int., 2005, vol. 45, pp. 91–94.

    Article  Google Scholar 

  28. W.T. Read and W. Shockley: Phys. Rev., 1950, vol. 78, pp. 275–89.

    Article  Google Scholar 

  29. W.A. Soer, K.E. Aifantis, and J.T.M. De Hosson: Acta Mater., 2005, vol. 53, pp. 4665–76.

    Article  Google Scholar 

  30. B.B. He, M.X. Huang, Z.Y. Liang, A.H.W. Ngan, H.W. Luo, J. Shi, W.Q. Cao, and H. Dong: Scripta Mater., 2013, vol. 69, pp. 215–18.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Professor A.H.W. Ngan for providing the nanoindentation facilities. The authors express their gratitude to Drs. W. Xu, K. Zhu, and S. Allian, ArcelorMittal, for stimulating discussions. This work was supported by the National Science Foundation of China (Project No. 51301148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. X. Huang.

Additional information

Manuscript submitted September 18, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, B.B., Huang, M.X. Revealing the Intrinsic Nanohardness of Lath Martensite in Low Carbon Steel. Metall Mater Trans A 46, 688–694 (2015). https://doi.org/10.1007/s11661-014-2681-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2681-7

Keywords

Navigation