Skip to main content
Log in

Microstructural Evolution During Normal/Abnormal Grain Growth in Austenitic Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The grain growth behavior of 304L stainless steel was studied in a wide range of annealing temperatures and times with emphasis on the distinction between normal and abnormal grain growth (AGG) modes. The dependence of AGG (secondary recrystallization) at homologous temperatures of around 0.7 upon microstructural features such as dispersed carbides, which were rich in Ti but were almost free of V, was investigated by optical micrographs, X-ray diffraction patterns, scanning electron microscopy images, and energy dispersive X-ray analysis spectra. The bimodality in grain-size distribution histograms signified that a transition in grain growth mode from normal to abnormal was occurred at homologous temperatures of around 0.7 due to the dissolution/coarsening of carbides. Continued annealing to a long time led to completion of secondary recrystallization and the subsequent reappearance of normal growth mode. Another noticeable abnormality in grain growth was observed at very high annealing temperatures, which may be related to grain boundary faceting/defaceting. Finally, a versatile grain growth map was proposed, which can be used as a practical guide for estimation of the resulting grain size after exposure to high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. N.R. Baddoo: J. Construct. Steel Res., 2008, vol. 64, pp. 1199–1206.

    Article  Google Scholar 

  2. K.H. Lo, C.H. Shek, and J.K.L. Lai: Mater. Sci. Eng. R, 2009, vol. 65, pp. 39–104.

    Article  Google Scholar 

  3. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, 2004.

    Google Scholar 

  4. D.A. Molodov: Microstructural Design of Advanced Engineering Materials, Wiley, Weinheim, 2013.

    Book  Google Scholar 

  5. M. Hillert: Acta Metall., 1965, vol. 13, pp. 227–38.

    Article  Google Scholar 

  6. J. Mizera, J.W. Wyrzykowski, and K.J. Kurzydłowski: Mater. Sci. Eng. A, 1988, vol. 104, pp. 157–62.

    Article  Google Scholar 

  7. A.F. Padilha, R.L. Plaut, and P.R. Rios: ISIJ Int., 2003, vol. 43, pp. 135–43.

    Article  Google Scholar 

  8. P.R. Rios, and G.S. Fonseca: Scripta Mater., 2004, vol. 50, pp. 71–75.

    Article  Google Scholar 

  9. D. Chakrabarti, C. Davis, and M. Strangwood: Mater. Charact., 2007, vol. 58, pp. 423–38.

    Article  Google Scholar 

  10. V.Y. Novikov: Mater. Lett., 2012, vol. 68, pp. 413–15.

    Article  Google Scholar 

  11. B. Verlinden, J. Driver, I. Samajdar, and R.D. Doherty: Thermo-mechanical Processing of Metallic Materials, Elsevier, Oxford, 2007.

    Google Scholar 

  12. J.B. Koo, and D.Y. Yoon: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1911–26.

    Article  Google Scholar 

  13. J.S. Choi, and D.Y. Yoon: ISIJ Int., 2001, vol. 41, pp. 478–83.

    Article  Google Scholar 

  14. J.C. Hamilton, D.J. Siegel, I. Daruka, and F. Leonard: Phys. Rev. Lett., 2003, vol. 90, p. 246102

    Article  Google Scholar 

  15. B.N. Kim, K. Hiraga, and K. Morita: Mater. Trans., 2003, vol. 44, pp. 2239–44.

    Article  Google Scholar 

  16. L. Gavard, F. Montheillet, and J. Le Coze: Scripta Mater., 1998, vol. 39, pp. 1095–99.

    Article  Google Scholar 

  17. M. Militzer, A. Giumelli, E.B. Hawbolt, and T.R. Meadowcroft: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3399–3409.

    Article  Google Scholar 

  18. X. Wang, L. Hu, K. Liu, and Y. Zhang: J. Alloy. Compd., 2012, vol. 527, pp. 193–96.

    Article  Google Scholar 

  19. Z. Huda, and T. Zaharinie: J. Alloy. Compd., 2009, vol. 478, pp. 128–32.

    Article  Google Scholar 

  20. O. Flores, and L. Martinez: J. Mater. Sci., 1997, vol. 32, pp. 5985–91.

    Article  Google Scholar 

  21. P.R. Rios: Acta Mater., 1997, vol. 45, pp. 1785–89.

    Article  Google Scholar 

  22. P.R. Rios, and M.E. Glicksman: Acta Mater., 2006, vol. 54, pp. 5313–21.

    Article  Google Scholar 

  23. J.C. Dutra, F. Siciliano, and A.F. Padilha: Mater. Res., 2002, vol. 5, pp. 379–84.

    Article  Google Scholar 

  24. I. Tamura, H. Sekine, T. Tanaka, and C. Ouchi: Thermomechanical Processing of High-Strength Low-Alloy Steels, Butterworth, London, 1988.

    Google Scholar 

  25. L.F. Li, and J.P. Celis: Can. Metall. Q., 2003, vol. 42, pp. 365–76.

    Article  Google Scholar 

  26. H. Mirzadeh, and A. Najafizadeh: J. Alloy. Compd., 2009, vol. 476, pp. 352–55.

    Article  Google Scholar 

  27. T. Maki, S. Shimooka, M. Umemoto, and I. Tamura: Trans. JIM, 1972, vol. 13, pp. 400–407.

    Google Scholar 

  28. H. Mirzadeh, and A. Najafizadeh: Mater. Charact., 2008, vol. 59, pp. 1650–54.

    Article  Google Scholar 

  29. H. Mirzadeh, and A. Najafizadeh: ISIJ Int., 2013, vol. 53, pp. 680–89.

    Article  Google Scholar 

  30. G. Petzow: Metallographic Etching, 2nd ed., ASM International, Materials Park, OH, USA, 1999.

    Google Scholar 

  31. G.F. Vander Voort, E.P. Manilova, J.R. Michael (2004) Microsc. Microanal., vol. 10, pp. 76–77

    Article  Google Scholar 

  32. Standard Methods for Estimating the Average Grain Size, ASTM E 112-10, ASTM International, West Conshohocken, PA, 2010.

  33. R. Abbaschian, L. Abbaschian, and R.E. Reed-Hill: Physical Metallurgy Principles, 4th ed., Cengage Learning, Stamford, CT, 2009.

    Google Scholar 

  34. S. Roy, D. Chakrabarti, and G.K. Dey: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 717–28.

    Article  Google Scholar 

  35. D. Chakrabarti, C. Davis, and M. Strangwood: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 717–28.

    Google Scholar 

  36. Q. Yu, and Y. Sun: Mater. Sci. Eng. A, 2006, vol. 420, pp. 34–38.

    Article  Google Scholar 

  37. R. Stasko, H. Adrian, and A. Adrian: Mater. Charact., 2006, vol. 56, pp. 340–347.

    Article  Google Scholar 

  38. P.R. Rios: Scripta Mater., 1996, vol. 34, pp. 1185–88.

    Article  Google Scholar 

  39. B. Weiss, and R. Stickler: Metall. Trans., 1972, vol. 3, pp. 851–66.

    Article  Google Scholar 

  40. Q. Sha, and Z. Sun: Mater. Sci. Eng. A, 2009, vol. 523, pp. 77–84.

    Article  Google Scholar 

  41. H. Mirzadeh, and A. Zomorodian: Met. Mater. Int., 2010, vol. 16, pp. 83–86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Mirzadeh.

Additional information

Manuscript submitted March 11, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirdel, M., Mirzadeh, H. & Habibi Parsa, M. Microstructural Evolution During Normal/Abnormal Grain Growth in Austenitic Stainless Steel. Metall Mater Trans A 45, 5185–5193 (2014). https://doi.org/10.1007/s11661-014-2426-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2426-7

Keywords

Navigation