Skip to main content
Log in

Plastic-Strain-Amplitude Dependence of Dislocation Structures in Cyclically Deformed 〈112〉-Oriented Cu-7 at. pct Al Alloy Single Crystals

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Dislocation structures in \( [\overline{1} 12] \) Cu-7 at. pct Al alloy single crystals cyclically deformed at different plastic strain amplitudes were investigated by transmission electron microscope (TEM) and compared with the results of \( [\overline{1} 12] \) Cu single crystals. It is found that the plastic strain amplitude γ pl has an obvious effect on the slip deformation mode, and consequently on the cyclic hardening behavior of \( [\overline{1} 12] \) Cu-7 at. pct Al alloy single crystals with an intermediate stacking fault energy. For instance, a high slip planarity (i.e., only formation of planar-slip bands) contributes to the occurrence of a gentle cyclic hardening with a much lower saturation stress at a low γ pl of 4.5 × 10−4. A mixed planar/wavy-slip mode (e.g., persistent Lüder’s bands/wall-like microstructures) at an intermediate γ pl of 2.2 × 10−3 causes an obvious cyclic hardening up to a comparable saturation stress to that for the \( [\overline{1} 12] \) Cu single crystal. In contrast, the deformation mode is dominated by wavy slip (e.g., ill-defined dislocation cells and walls) at the highest γ pl of 7.2 × 10−3, causing that its cyclic hardening curve is quite similar to that for the \( [\overline{1} 12] \) Cu single crystal; in this case, a slightly higher saturation stress level than that for the Cu single crystal is reached due to the additional solid solution strengthening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. Laird, P. Charsley and H. Mughrabi: Mater. Sci. Eng., 1986, vol. 81, pp. 433–50.

    Article  Google Scholar 

  2. Z.S. Basinski and S.J. Basinski: Prog. Mater. Sci., 1992, vol. 36, pp. 89–148.

    Article  Google Scholar 

  3. S. Suresh: Fatigue of Materials, Cambridge University Press, London, 1998.

    Book  Google Scholar 

  4. X.W. Li, Z.F. Zhang, Z.G. Wang, S.X. Li and Y. Umakoshi: Defect Diffus. Forum, 2001, vol. 188–199, pp. 153–70.

    Article  Google Scholar 

  5. X.W. Li, Y. Umakoshi, B. Gong, S.X. Li and Z.G. Wang: Mater. Sci. Eng. A, 2002, vol. 333, pp. 51–9.

    Article  Google Scholar 

  6. K. Mecke and C. Blochwitz: Cryst. Res. Technol., 1982, vol. 17, pp. 743–58.

    Article  Google Scholar 

  7. C. Buque: Int. J. Fatigue, 2001, vol. 23, pp. 671–8.

    Article  Google Scholar 

  8. P. Li, Z.F. Zhang, X.W. Li, S.X. Li and Z.G. Wang: Acta Mater., 2009, vol. 57, pp. 4845–54.

    Article  Google Scholar 

  9. P. Li, Z.F. Zhang, S.X. Li and Z.G. Wang: Phil Mag., 2009, vol. 89, pp. 2903–20.

    Article  Google Scholar 

  10. Z.G. Wang, Z.F. Zhang, X.W. Li, W.P. Jia and S.X. Li: Mater. Sci. Eng. A, 2001, vol. 319–321, pp. 63–73.

    Article  Google Scholar 

  11. F. Ackermann, L.P. Kubin, J. Lepinoux and H. Mughrabi: Acta Metall., 1984, vol. 32, pp. 715–25.

    Article  Google Scholar 

  12. X.W. Li, Y.M. Hu and Z.G. Wang: Mater. Sci. Eng. A, 1998, vol. 248, pp. 299–303.

    Article  Google Scholar 

  13. B.D. Yan, A.S. Cheng, L. Bauchinger, S. Stanzl and C. Laird: Mater. Sci. Eng., 1986, vol. 80, pp. 129–42.

    Article  Google Scholar 

  14. L. Buchinger, A.S. Cheng, S. Stanzl and C. Laird: Mater. Sci. Eng., 1986, vol. 80, pp. 155–67.

    Article  Google Scholar 

  15. S.I. Hong and C. Laird: Mater. Sci. Eng. A, 1990, vol. 128, pp. 155–69.

    Article  Google Scholar 

  16. H. Inui, S.I. Hong and C. Laird: Acta Metall. Mater., 1990, vol. 38, pp. 2261–74.

    Article  Google Scholar 

  17. X.W. Li, X.M. Wu, Z.G. Wang and Y. Umakoshi: Phys. Stat. Sol. (a), 2002, vol 192, pp. R1–R3.

    Article  Google Scholar 

  18. X.W. Li, X.M. Wu, Z.G. Wang and Y. Umakoshi: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 307–18.

    Article  Google Scholar 

  19. A. Abel, M. Wilhelm and V. Gerold: Mater. Sci. Eng., 1979, vol. 37, pp. 187–200.

    Article  Google Scholar 

  20. S.I. Hong: Scripta Mater., 2001, vol. 44, pp. 995–1001.

    Article  Google Scholar 

  21. X.M. Wu, Z.G. Wang and G.Y. Li: Mater. Sci. Eng. A, 2001, vol. 314, pp. 39–47.

    Article  Google Scholar 

  22. X.W. Li, Z.G. Wang and S.X. Li: Mater. Sci. Eng. A, 1999, vol. 269, pp. 166–74.

    Article  Google Scholar 

  23. B. Gong, Z. Wang and Z.G. Wang: Acta Mater., 1999, vol. 47, pp. 317–24.

    Article  Google Scholar 

  24. T.S. Byum: Acta Mater., 2003, vol. 51, pp. 3063–71.

    Article  Google Scholar 

  25. M. Niewczas and G. Saada: Phil. Mag. A, 2002, vol. 82, pp. 167–91.

    Google Scholar 

  26. Z.R. Wang: Phil. Mag., 2004, vol. 84, pp. 351–79.

    Article  Google Scholar 

  27. A.T. Winter: Phil. Mag., 1974, vol. 30, pp. 719–38.

    Article  Google Scholar 

  28. S.I. Hong and C. Laird: Acta Metall. Mater., 1990, vol. 38, pp. 1581–94.

    Article  Google Scholar 

  29. V. Gerold and H.P. Karnthaler: Acta Metall., 1989, vol 37, pp. 2177–83.

    Article  Google Scholar 

  30. Z. Wang, B. Gong and Z.G. Wang: Acta Mater., 1999, vol. 47, pp. 307–15.

    Article  Google Scholar 

  31. C.E. Feltner and C. Laird: Trans. Am. Inst. Min. Metall. Eng., 1968, vol. 242, pp. 1253–57.

    Google Scholar 

  32. C.S. Pande and P.M. Hazzledine: Phil. Mag., 1971, vol. 24, pp. 1393–410.

    Article  Google Scholar 

  33. P.J. Woods: Phil. Mag., 1973, vol. 28, pp. 155–91.

    Article  Google Scholar 

  34. J.S. Ha and S.I. Hong: Mater. Sci. Eng. A, 2013, vol. 565, pp. 9–12.

    Article  Google Scholar 

  35. C. Laird: in Dislocation in Solids, vol. 6, F.R.N. Nabarro, ed., North-Holland, Amsterdam, 1983, pp. 55–120.

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 51071041, 51271054, and 51231002, and the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20110042110017, as well as by the Fundamental Research Funds for the Central Universities of China under Grant Nos. N110105001 and N120505001. Prof. X.W. Li is grateful for this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. W. Li.

Additional information

Manuscript submitted September 13, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X.W., Peng, N., Wu, X.M. et al. Plastic-Strain-Amplitude Dependence of Dislocation Structures in Cyclically Deformed 〈112〉-Oriented Cu-7 at. pct Al Alloy Single Crystals. Metall Mater Trans A 45, 3835–3843 (2014). https://doi.org/10.1007/s11661-014-2353-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2353-7

Keywords

Navigation