Skip to main content
Log in

The ExoMet Project: EU/ESA Research on High-Performance Light-Metal Alloys and Nanocomposites

  • Symposium: Processing-Microstructure-Property Relationships & Deformation Mechanisms of Magnesium Alloys
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The performance of structural materials is commonly associated with such design parameters as strength and stiffness relative to their density; a recognized means to further enhance the weight-saving potential of low-density materials is thus to improve on their mechanical attributes. The European Community research project ExoMet that started in mid-2012 targets such high-performance aluminum- and magnesium-based materials by exploring novel grain refining and nanoparticle additions in conjunction with melt treatment by means of external fields (electromagnetic, ultrasonic, and mechanical). These external fields are to provide for an effective and efficient dispersion of the additions in the melt and their uniform distribution in the as-cast material. The consortium of 27 companies, universities, and research organizations from eleven countries integrates various scientific and technological disciplines as well as application areas—including automotive, aircraft, and space. This paper gives an overview of the project, including its scope for development and organization. In addition, exemplary results are presented on nanoparticle production and characterization, mixing patterns in metal melts, interface reactions between metal and particles, particle distribution in the as-cast composite materials, and mechanical properties of the as-cast composite materials. The application perspective is considered as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W.H. Sillekens and N. Hort: in Structural Materials and Processes in Transportation, D. Lehmhus, M. Busse, A.S. Hermann, and K. Kayvantash, eds., Wiley-VCH Verlag, Weinheim, 2013, p. 146.

  2. A.L. Greer, P.S. Cooper, M.W. Meredith, W. Schneider, P. Schumacher, J.A. Spittle, and A. Tronche: Adv. Eng. Mat., 2003, vol. 5, no. 1–2, pp. 81–91.

    Article  Google Scholar 

  3. D.H. StJohn, M. Qian, M.A. Easton, P. Cao, and Z. Hildebrand: Met. Mat. Trans. A, 2005, vol. 36A, pp. 1669–1679.

    Article  Google Scholar 

  4. D.H. StJohn, M.A. Easton, M. Qian, and J.A. Taylor: Met. Mat. Trans. A, 2013, vol. 44A, pp. 2935–2949.

    Article  Google Scholar 

  5. M. Gupta and S. Nai Mui Ling: Magnesium, Magnesium Alloys, and Magnesium Composites, John Wiley & Sons, Hoboken, 2011, pp. 114–16.

    Book  Google Scholar 

  6. C. Borgonovo and D. Apelian: Mat. Sci. For., 2011, vol. 678, pp. 1–22.

    Article  Google Scholar 

  7. H. Dieringa: J. Mater. Sci., 2011, vol. 46, pp. 289–306.

    Article  Google Scholar 

  8. N.N: in Aluminum and Aluminum Alloys: ASM Specialty Handbook, J.R. Davis (ed.) pp. 639–644, ASM International, Materials Park, 1998.

    Google Scholar 

  9. N.N: Magnesium and Magnesium Alloys: ASM Specialty Handbook, M. M. Avedesian and H. Baker (eds.), pp. 7–11, ASM International, Materials Park, 1999.

    Google Scholar 

  10. M. Gupta and S. Nai Mui Ling: Magnesium, Magnesium Alloys, and Magnesium Composites, John Wiley & Sons, Hoboken, 2011, p. 91.

    Book  Google Scholar 

  11. C. Vivès: Met. Mat. Trans. B, June 1996, vol. 27B, pp. 445–455.

    Article  Google Scholar 

  12. C. Vivès: Met. Mat. Trans. B, June 1996, vol. 27B, pp. 457–464.

    Article  Google Scholar 

  13. K.B. Nie, X.J. Wang, K. Wu, M.Y. Zheng, and X.S. Hu: Mat. Sci. Eng. A, 2011, vol. 528, pp. 7484–7487.

    Article  Google Scholar 

  14. Y. Zuo, H. Li, M. Xia, B. Jiang, G.M. Scamans, and Z. Fan: Scripta Mat., 2011, vol. 64, pp. 209–212.

    Article  Google Scholar 

  15. K. Pericleous and V. Bojarevics: Prog. Comput. Fluid Dyn., 2007, vol. 7, nos. 2–4, pp. 118–127.

    Article  Google Scholar 

  16. V. Bojarevics and K. Pericleous: in Magnetohydrodynamics: Historical Evolution and Trends, S. Molokov, R. Moreau, and H.K. Moffatt, eds., Series “Fluid Mechanics and Its Applications”, vol. 80, Springer, Dordrecht, 2007, pp. 357–74.

  17. V. Bojarevics, R.A. Harding, K. Pericleous, and M. Wickins: Met. Mat. Trans. B, August 2004, vol. 35B, pp. 785–803.

    Article  Google Scholar 

  18. G. Djambazov, V. Bojarevics, B. Lebon, and K. Pericleous: in Light Metals 2014, J. Grandfield, ed., Wiley-TMS, Hoboken, 2014, pp. 1379–82.

  19. M. Garrido, Y. Fautrelle, L. Davoust, V. Bojarevics, K. Pericleous, M. Megahed, and O. Koeser: in Light Metals 2014, J. Grandfield, ed., Wiley-TMS, Hoboken, 2014, pp. 1405–10.

  20. A.D. McLeod and C.M. Gabryel: Met. Trans. A, 1992, vol. 23A, pp. 1279–1283.

    Article  Google Scholar 

  21. W.C. Wang, K. Matsugi, H. Fukushima, and G. Sasaki: Mat. Trans., 2007, vol. 48, pp. 1948–1954.

    Article  Google Scholar 

  22. H.Z. Ye, X.Y. Liu, and B. Luan: J. Mat. Proc. Tech., 2005, vol. 166, pp. 79–85.

    Article  Google Scholar 

  23. S. Terzi, R. Daudin, J. Villanova, P. Srirangam, P. Lhuissier, L. Salvo, E. Boller, R. Schweins, P. Lindner, J.-J. Blandin, P. Lee, and H. Lemmel: in Light Metals 2014, J. Grandfield, ed., Wiley-TMS, Hoboken, 2014, pp. 1389–93.

  24. M. Mounib and W. Lefebvre: in Magnesium Technology 2014, M. Alderman, M.V. Manuel, N. Hort, and N.R. Neelameggham, eds., Wiley-TMS, Hoboken, 2014, pp. 461–64.

  25. V. Boulos, L. Salvo, V. Fristot, P. Lhuissier, and D. Houzet: Proceedings of the 2012 Conference on Design and Architectures for Signal and Image Processing (DASIP 2012), IEEE, Karlsruhe, 2012, pp. 36–41.

  26. P. Lhuissier, L. Salvo, and V. Boulos: Analysis_3D plugin package, 2012. http://imagejdocu.tudor.lu/doku.php?id=plugin:morphology:analysis_3d:start, Accessed March 28, 2014.

  27. N.N.: Elektron 21: Datasheet 455, Magnesium Elektron, 2006. http://www.magnesium-elektron.com/data/downloads/DS455.pdf, Accessed March 28, 2014.

  28. H. Dieringa: Proc. 9th Int. Conf. on Magnesium Alloys and their Applications (on CD ROM), 2012, pp. 857–62.

  29. N.N.: Magnesium Vision 2020: A North American Automotive Strategic Vision for Magnesium, United States Automotive Materials Partnership, 2006. http://www.uscar.org/commands/files_download.php?files_id=240, Accessed March 28, 2014.

  30. N.N.: ExoMet project website, 2012. http://www.exomet-project.eu, Accessed March 28, 2014.

Download references

Acknowledgments

The authors wish to acknowledge financial support from the ExoMet project, which is co-funded by the European Commission in the 7th Framework Program (contract FP7-NMP3-LA-2012-280421), by the European Space Agency, and by the individual partner organizations. In his coordinating capacity, W.H. Sillekens thanks all ExoMet project participants who are not explicitly included in the manuscript with their results, yet implicitly are equally valuable with their contributions. S. Terzi and L. Salvo acknowledge P. Lhuissier (Université Grenoble Alpes) for facilitating the micro-tomography experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Sillekens.

Additional information

Manuscript submitted August 30, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sillekens, W.H., Jarvis, D.J., Vorozhtsov, A. et al. The ExoMet Project: EU/ESA Research on High-Performance Light-Metal Alloys and Nanocomposites. Metall Mater Trans A 45, 3349–3361 (2014). https://doi.org/10.1007/s11661-014-2321-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2321-2

Keywords

Navigation