Skip to main content
Log in

Effect of Destabilizing Heat Treatment on Solid-State Phase Transformation in High-Chromium Cast Irons

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This work describes the influence of secondary carbide precipitation at destabilizing heat treatment on kinetics of austenite phase transformation at a subcritical range of temperatures in high-Cr cast irons, alloyed with 4 to 6 wt pct of Mn or by complex Mn-Ni-Mo (Mn-Cu-Mo). The samples were soaked at 1073 K to 1373 K (800  °C to 1100  °C) (destabilization) or at 573 K to 973 K (300  °C to 700  °C) (subcritical treatment); the combination of destabilization and subcritical treatment was also used. The investigation was carried out with application of optical and electron microscopy and bulk hardness measurement. Time-temperature-transformation (TTT) curves of secondary carbide precipitation and pearlite transformation for as-cast austenite and destabilized austenite were built in this work. It was determined that the secondary carbide precipitation significantly inhibited the pearlite transformation rate at 823 K to 973 K (550  °C to 700  °C). The inhibition effect is more evident in cast irons alloyed with complex Mn-Ni-Mo or Mn-Cu-Mo. The possible reasons for transformation decelerating could be austenite chemical composition change (enriching by Ni, Si, and Cu, and depleting by Cr) and stresses induced by secondary carbide precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. NIKON is a trademark of Nikon Corporation, Tokyo.

  2. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. I.I. Tsypin: Wear-Resistant White Cast Irons. Structure and Properties, Metallurgical Publishing House, Moscow, 1983, pp. 150–70 (in Russian).

  2. R.W. Durman: Int. J. Miner. Proc., 1988, vol. 22, pp. 381–99.

    Article  CAS  Google Scholar 

  3. E. Zumelzu, I. Goyos, C. Cabezas, O. Optitz, and A. Parada: J. Mater. Process. Technol., 2002, vol. 128 (1–3), pp. 250–55.

    Article  CAS  Google Scholar 

  4. O.N. Dogan, J.A. Hawk, and G. Laird II: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1315–28.

    Article  CAS  Google Scholar 

  5. C.P. Tabrett and I.R. Sare: Scripta Mater., 1998, vol. 38, pp. 1747–53.

    Article  CAS  Google Scholar 

  6. W. Jun, S. Zhiping, Z. Rulin, L. Cong, S. Baoluo, G. Shenji, and H. Sijiu: J. Mater. Eng. Perform., 2006, vol. 15, pp. 316–19.

    Article  Google Scholar 

  7. G. Laird II: AFS Trans., 1991, vol. 99, pp. 339–57.

    CAS  Google Scholar 

  8. S. Inthidech, K. Boonmak, P. Sricharoenchai, N. Sasaguri, and Y. Matsubara: Mater. Trans., 2010, vol. 51 (7), pp. 1264–71.

    Article  CAS  Google Scholar 

  9. A.E. Karantzalis, A. Lekatou, and H. Mavros: J. Mater. Eng. Perform., 2009, vol. 18 (2), pp. 174–81.

    Article  CAS  Google Scholar 

  10. A. Bedolla-Jacuinde, L. Arias, and B. Hernandez: J. Mater. Eng. Perform., 2003, vol. 12 (4), pp. 371–82.

    Article  CAS  Google Scholar 

  11. A.E. Karantzalis, A. Lekatou, and E. Diavati: J. Mater. Eng. Perform., 2009, vol. 18 (8), pp. 1078–85.

    Article  CAS  Google Scholar 

  12. W. Jun, L. Cong, L. Haohuai, Y. Hongshan, S. Baoluo, G. Shenji, and H. Sijiu: Mater. Charact., 2006, vol. 56, pp. 73–78.

    Article  Google Scholar 

  13. A.E. Karantzalis, A. Lekatou, A. Kapoglou, H. Mavros, and V. Dracopoulos: J. Mater. Eng. Perform., 2012, vol. 21 (6), pp. 1030–39.

    CAS  Google Scholar 

  14. D. Kmetic, F. Mlakar, V. Tucič, J. Žvokelj, F. Vodopivec, M. Jakupovič, and B. Ralič: Železarski Zbornik, 1987, vol. 21 (4), pp. 151–65.

    CAS  Google Scholar 

  15. G.L.F. Powell and G. Laird II: J. Mater. Sci., 1992, vol. 27, pp. 29–35.

    Article  CAS  Google Scholar 

  16. F. Maratray: Trans. AFS, 1971, vol. 79, pp. 121–24.

    CAS  Google Scholar 

  17. A. Wienngmoon, T. Chairuangsri, and J.T.H. Pearce: Iron Steel Inst. Jpn. Int., 2004, vol. 44 (2), pp. 396–403.

    Article  Google Scholar 

  18. P. Amorim, H. Santos, J. Santos, S. Coimbra, and C. Sá: Mater. Sci. Forum, 2004, vols. 455–456, pp. 290–94.

    Article  Google Scholar 

  19. W.W. Cias: Trans. AFS, 1974, vol. 82, pp. 317–28.

    CAS  Google Scholar 

  20. E.V. Rozhkova, M.E. Garber, and I.I. Tsypin: Met. Sci. Heat Treatment, 1981, vol. 23 (1), pp. 59–63.

    Article  Google Scholar 

  21. E.V. Rozhkova, S.S. Mikhailovskaya, and I.I. Tsypin: Met. Sci. Heat Treatment, 1983, vol. 25 (4), pp. 277–81.

    Article  Google Scholar 

  22. G. Laird II and G.L.F. Powell: Metall. Trans. A, 1993, vol. 24A, pp. 981–88.

    CAS  Google Scholar 

  23. W. Fu, Z. Wang, T. Jing, and Y. Zheng: J. Mater. Sci Technol., 1998, vol. 14, pp. 478–80.

    Article  CAS  Google Scholar 

  24. O. Erić, D. Rajnović, S. Zec, L. Sidjanin, and M.T. Jovanović: Mater. Charact., 2006, vol. 57 (4–5), pp. 211–17.

    Google Scholar 

  25. V.S. Mes’kin: Basis of Steel Alloying, Metallurgical Publishing House, Moscow, 1964, pp. 124–179 (in Russian).

  26. J. Chen, S. Tang, Z. Liu, and G. Wang: Mater. Design, 2013, vol. 49, pp. 465–70.

    Article  CAS  Google Scholar 

  27. J.D.B. DeMello, M. Durand-Charre, and S. Hamar-Thibault: Metall. Trans. A, 1983, vol. 14A, pp. 1793–01.

  28. Y. Yokomizo, K. Yamamoto, N. Sasaguri, and Y. Matsubara: Key Eng. Mater., 2010, vol. 457, pp. 237–42.

    Article  Google Scholar 

  29. Steel Castings Handbook, Suppl. 11, Hardenability and Heat Treatment, SFSA, 1985, pp. 3–10.

  30. J.G. Wang, L.C. Zhang, G.L. Chen, and H.Q. Ye: J. Mater. Sci., 1998, vol. 33, pp. 2563–71.

    Article  CAS  Google Scholar 

  31. M. Dalgic and G. Löwisch: J. Heat Treatment Mater., 2004, vol. 1, pp. 28–34.

    Google Scholar 

  32. E. Pagounis and V.K. Lindroos: Scripta Mater., 1997, vol. 37 (1), pp. 65–69.

    Article  CAS  Google Scholar 

  33. ASM Ready Reference: Thermal Properties of Metals, ASM INTERNATIONAL, Materials Park, OH, 2002, pp. 12–13.

  34. M.C. Uslu, D. Canadinc, H.-G. Lambers, S. Tschumak, and H.J. Maier: Model. Simul. Mater. Sci. Eng., 2011, vol. 19 (4), pp. 045007–045023.

    Article  Google Scholar 

  35. P.H. Shipway and H.K.D.H. Bhadeshia: Mater. Sci. Eng., A, 1995, vol. 201 (1–2), pp. 143–49.

  36. E.A. Rumiantzev, V.F. Saveliev, and V.M. Sagalevich: Met. Sci. Heat Treatment, 1983, vol. 2, pp. 39–41 (in Russian).

  37. L. Weijuan and Z. Shoubin: Advances in Intelligent and Soft Computing, Polish Academy of Science, Poland, 2012, vol. 114, pp. 261–68.

Download references

Acknowledgments

Financial support from the Muroran Institute of Technology is gratefully acknowledged. We extend our special thanks to Anatolii Rud and Galina Shendrick, Department of Translation, Pryazovskyi State Technical University, who offered translation support, bettering the English version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasily Efremenko.

Additional information

Manuscript submitted December 28, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Efremenko, V., Shimizu, K. & Chabak, Y. Effect of Destabilizing Heat Treatment on Solid-State Phase Transformation in High-Chromium Cast Irons. Metall Mater Trans A 44, 5434–5446 (2013). https://doi.org/10.1007/s11661-013-1890-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1890-9

Keywords

Navigation