Skip to main content

Advertisement

Log in

Stress Induce Martensitic Transformations in Hydrogen Embrittlement of Austenitic Stainless Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In austenitic type stainless steels, hydrogen concentration gradients formed during electrochemical charging and followed by hydrogen loss during aging, at room temperature, surface stresses, and martensitic phases α′-BCC and ε-HCP developed. The basic relationship between the X-ray diffraction peak broadening and the hydrogen gradients, formed during charging and aging at room temperature in such austenitic stainless steels, were analyzed. The results demonstrate that the impact of stresses must be considered in the discussion of phase transformations due to hydrogenation. Austenitic stainless steels based on iron-nickel-chromium, have relatively low stacking fault energy γSFE and undergo: quenching to low temperatures, plastic deformation, sensitization heat treatments, high pressure (≥3–5 × 10Pa) by hydrogen or other gases, electrochemical charging (when the sample is cathode) and when is irradiation by various ions the samples in vacuum. All the above mentioned induce formation of ε and α′ in the face-centered cubic (FCC) austenite γ matrix. The highest stresses cause formation of mainly α′ phase and ε-martensite, and both are involved in plastic deformation processes and promoting crack propagation at the surface. In 310 steel, the crack propagation is based on deformation processes following ε-martensitic formation only. Formations of ε- and α′-martensites were noted along the fracture surfaces and ahead of the crack tip. The cracks propagated through the ε-martensitic plates, which formed along the active slip planes, while α′ phase was always found in the high-stress region on the ends of the ligaments from both sides of the crack surfaces undergoing propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.S.M. Tavares, S. Miraglia, D. Fruchart: Journal of Alloys and Compounds 356– 357, 2003, pp. 340–42.

    Article  Google Scholar 

  2. A.E. Pontini and J.D. Hermida, Scripta Materialia, vol.37, no.11, 1997, pp.1831- 37.

    Article  Google Scholar 

  3. P. Rozenak: J. of Mater. Science, vol. 25, 1990, pp. 2532-38.

    Article  Google Scholar 

  4. V.N. Shivanyuk, J. Foct, V.G. Gavriljuk: Scripta Materialia, vol.43, 2003, pp.601-06.

    Article  Google Scholar 

  5. V. G. Gavriljuk, H. Hanninen, A.V. Tarasenko, A.S. Teresihchenko, and K.Ullakko: Acta Metall. Mater., 1995, vol. 43, no. 2, pp. 559-68.

    Article  Google Scholar 

  6. B. Cina: Acta Metallurgica, 1958, vol. 6, pp. 748–62

  7. P.M. Kelly: Acta Metalurgica, 1965, vol. 13, pp. 635–46.

  8. M.W. Bowkett, S.R. Keown and D. R. Harries: Metal Science, 1982, vol. 16, pp. 499-516.

    Article  Google Scholar 

  9. J.P. Hirt: Acta Metallurgica, 1966, vol.14, pp. 1392-95.

    Google Scholar 

  10. J.M. Rigsbee: J. of Mater. Science, 1977, vol. 12 pp. 406-9.

    Article  Google Scholar 

  11. J. Talonen: Doctorat, Helsinki University of Technology, Finland, 2007.

  12. D. Peckner and I.M. Bernstein: Handbook of Stainless Steels, McGraw-Hill, New York, 1977.

  13. P. Rozenak and D. Eliezer: J. of Mater. Science, 1986, vol. 21, pp. 3065-70.

    Article  Google Scholar 

  14. P. Rozenak and D. Eliezer: Metall. Trans. A, 1989, vol. 20, pp. 2187- 90.

    Article  Google Scholar 

  15. M. Hoelzel, S.A. Danilkin, H. Ehrenberg, D.M. Toebbens, T.J.Udovic, H. Fuess, and H. Wipf: Mater. Sci. Eng. A, 2004, vol. 384, pp. 255–61.

    Google Scholar 

  16. M. Hoelzel, V. Rajevac, S.A. Danilkin, T.J. Udovic, H. Wipf, and H. Fuess: J. Phys.: Condens. Mater., 2005, vol. 17, pp. 3537–46.

  17. M. Holzwort and M. Louthan, Jr.: Corrosion, 1968, vol. 24, pp. 110–24.

    Article  Google Scholar 

  18. H. Okada, Y. Hosoi, and S. Abe: Corrosion, 1970, vol. 26, pp. 183–89.

    Google Scholar 

  19. M. Rigsbee: Metallography, 1978, vol. 11, pp. 493–98.

    Article  Google Scholar 

  20. A. Inoue, T. Hosoya, and T. Masumoto: Trans. Iron Steel Inst., 1979, vol. 19, pp. 170–79.

    Google Scholar 

  21. H. Hanninen and T. Hakarainen: Corrosion, 1980, vol. 36, pp. 47–51.

  22. H. Mathias, Y. Katz, and S. Nadiv: Mater. Sci., 1978, vol. 12, pp. 129–37.

    Google Scholar 

  23. N. Narita, C.J. Altstetter, and H.K. Birnbaum: Metall. Trans. A, 1982, vol. 13A, pp. 1355–64.

    Article  Google Scholar 

  24. A. Szummer and A. Janko: Corrosion, 1979, vol. 35, pp. 461–66.

    Article  Google Scholar 

  25. Q. Yang and L.J. Luo: Mater. Sci. Eng. A, 2000, vol. 288, pp. 75–83.

    Article  Google Scholar 

  26. P. Rozenak and R. Bergman: Mater. Sci. Eng. A, 2006, vol. 437 (2), pp. 336–78.

    Google Scholar 

  27. P. Rozenak and D. Eliezer: Mater. Sci. Eng., 1984, vol. 67, pp. L1–L4.

    Article  Google Scholar 

  28. P. Rozenak and D. Eliezer: J. Mater. Sci., 1984, vol. 19, pp. 3873–79.

    Article  Google Scholar 

  29. P. Rozenak and D. Eliezer: Acta Metall., 1987, vol. 35 (9), pp. 2329–40.

    Article  Google Scholar 

  30. D.G. Ulmert and C.J. Altsetetter: Acta Metall. Mater., 1993, vol. 41, pp. 2235–41.

    Article  Google Scholar 

  31. S. Chen, M. Gao and R.P. Wei: Metallurgical and Materials Transaction A, vol. 27A, 1996, pp. 29-40.

    Article  Google Scholar 

  32. A.P. Bentley and G.C. Smith: Materials Science and Technology, 1982, vol.2, pp. 1140-48.

    Article  Google Scholar 

  33. E. Johnson, E. Gerritsen, N.G. Chechenin, A. Johansen, L. Sarholt-Kristensen, H.A.A. Keetels, L. Grabaek and J. Bohr: Nuclear Instruments and Method in Physics Research, 1989, vol. B39, pp. 573-77.

    Article  Google Scholar 

  34. H. Kinoshita, H. Takahashi, D. Gustiono, N. Sakaguchi, T. Shibayama and S. Watanabe: Mater. Trans., 2007, vol. 48 (5), pp. 924–30.

  35. D. Gustiono, N. Sakaguchi, T. Shibayama, H. Kinoshita and H. Takahashi, The Japan Institute of Metals, Materials Transactions, 2004, vol. 45, no. 1, pp. 65-68.

    Google Scholar 

  36. Q.Yang and J.L.Luo: Materials Science and Engineering A288, 2000, pp.75-83.

    Article  Google Scholar 

  37. A.P. Bentley and G.C. Smith: Material Science and Technology, vol.2, 1986, pp.1140-48.

    Article  Google Scholar 

  38. S.P. Hannula, H.Hanninen and S. Tahtinen: Metall. Trans. A, vol.15A, 1984, 2205-11.

    Article  Google Scholar 

  39. M. Tanino, H. Komatsu and S. Funaki: J. Phys., 1982, C4(12), Tome 43, pp. C4-503-08.

  40. S. Chen, M. Gao and R.P. Wei: Metallurgical and Materials Transaction A, vol. 27A, 1996, pp. 29-40.

    Article  Google Scholar 

  41. P. Rozenak and E.Shani: Metallurgical and Materials Transactions A, vol. 43A, 2012, pp. 4028-42.

    Article  Google Scholar 

  42. A.P. Bentley and G.C. Smith: Metall. Trans. A, 1986, vol. 17A, pp. 1593–600.

    Article  Google Scholar 

  43. Y. Hosoya, A. Inoue, and T. Masumoto: Iron Steel Inst. Japan, 1977, pp. 769–98.

  44. P. Rozenak, L.S. Zevin D. Eliezer: J of Mater. Science, 1983, vol. 17, pp. 63-66.

    Google Scholar 

  45. G.H. Eichelmann and F.C. Hull: Trans. ASM, 1953, pp. 45–77.

  46. B. Holmes, T. Gladman and F.B. Pickering: PROD/PM/5762/12/72/A, June 1972.

  47. T. Angel: J. Iron Steel Inst. 1954, pp. 165–77.

  48. T. Williams, R.G. Williams, and P.C. Capellaro: Proc. 6th Int. Cryogenic Eng. Conf., Grenoble, May 1976, p. 337.

  49. R.E. Schramm and R.P. Reed: Metall. Trans. A, 1975, vol. 6A

  50. A.W. Thompson: Materials Science and Engineering, 1974, vol.14, pp.253-64.

    Article  Google Scholar 

  51. G. Han, J. He, S. Fukuyama and K. Yokogawa: Acta Mater., 1998, vol.46, pp.4559-70.

    Article  Google Scholar 

  52. R.B. Benson, R. K. Dann and L.W. Roberts: Trans AIME, 1968, vol. 242, pp. 2199.

    Google Scholar 

  53. R.M. Vennett, G.S. Ansell: Trans. Am. Soc. Metals, 1969, vol.62, pp. 1007.

    Google Scholar 

  54. A.W. Thompson and O. Buck: Metall. Trans. A, 1976, vol. 7A, pp. 329–31.

  55. P.J. Ferreira, I.M. Robertson and H.K. Birnbaum: Materials Science Forum, 1996, vols. 207-209, pp. 93-6.

    Article  Google Scholar 

  56. A.E. Pontini and J.D. Hermida: Scripta Materalia, 1997, vol. 37, no. 11, pp. 1831-37.

    Article  Google Scholar 

  57. J.D. Hermida and A. Roviglione: Scripta Materialia, 1998, vol. 39, no. 8, pp. 1145-49.

    Article  Google Scholar 

  58. P. Sofronis: Doctoral thesis, University of Illinois at Urbana-Champagne, 1987.

  59. H. K. Birbaum and P. Sofronis: Materials Science and Engineering, 1994, vol. A176, pp. 191-201.

    Article  Google Scholar 

  60. I.M. Robertson: Engineering Fracture Mechanism, 2001, vol. 68, pp. 671-92.

    Article  Google Scholar 

  61. J. Majevadia: Nuclear Future, 2012, vol.8, issue2, pp.46-50.

    Google Scholar 

  62. V.G. Gavrijuk, H. Hanninen, A.V. Tarashenko, A.S. Tereshchenko and K. Ullakko: Acta Metal. Mater., 1995, vol.43, no. 2, pp. 559-68.

    Article  Google Scholar 

  63. P. Rozenak and D. Eliezer: Journal of Materials Science, 1986, vol. 21, pp. 3065-70.

    Article  Google Scholar 

  64. P. Rozenak, L. Zevin and D. Eliezer: J. Mater. Sci., 1984, vol. 19, pp. 567–73.

  65. T.C. Lee, D.K. Dewald, J.A. Eades, I.M. Robertson and H.K. Birnbaum: Rev. Sci. Instrum. 1991, vol. 62, pp. 1438-44.

    Article  Google Scholar 

  66. P. Rozenak and A. Loew: Corrosion Science, 2008, vol. 50, pp.3021-30.

    Article  Google Scholar 

  67. T.P. Perng and C. J. Altstetter: Scripta Metall., 1984, vol. 18, pp. 67-9.

    Article  Google Scholar 

  68. R.C.Frank, J.E.Baker and C.J. Altstetter: Metalurgical Transactions A, 1982, vol.13A, pp. 581-84.

    Article  Google Scholar 

  69. R.J. Coyle, A. Atrens, N. Fiore, J.J. Bellina and M. Jolles: Proceeding of Symposium Held at the TMS-AIME Fall Meeting, Z.A. Foroulis, ed., Chicago, Illinois, October 24–26, 1977, pp. 431–39.

  70. A. Atrens, J.J. Bellina, N.J. Fiore, and R. Coye: The Metal Science of Stainless Steels, E. Collings and H. King, eds., American Institute of Engineers, New York, 1979, pp. 54–69.

  71. K. Farrel and M.B. Lewis: Scripta Metall., 1981, vol. 15, pp. 661-64.

    Article  Google Scholar 

  72. H.K. Birnbaum and P. Sofronis: Mater. Sci. Eng., 1994, vol. A176, pp. 191–202.

    Article  Google Scholar 

  73. N. Tsukuda and T. Arai: Proc. Japan Acad., 1993, vol. 69, pp. 95-9.

    Article  Google Scholar 

  74. T. Arai, K. Itoh and N. Thukuda: Engineering Science Reports, Kyushu University, 1993, vol. 15 (3), pp. 285–90.

  75. E. Minkovitz, E. Talianker and D. Eliezer: Material Science and Engineering, 1986, vol. 83, pp. 269- 70.

    Article  Google Scholar 

  76. M.W. Bowkett, S.R. Keown and D.R. Harries: Metal Science, 1982, vol. 16, pp 99- 107.

    Article  Google Scholar 

  77. P.Rozenak, I.M. Robertson and H. K. Birnbaum: Acta Metall. Mater., 1990, vol. 38 (11), pp. 2013–40.

  78. P. Rozenak: J. of Materials Science, 1990, vol. 9, pp. 627-29.

    Google Scholar 

  79. C.D. Beachem: Met. Tran., 1972, vol.3, pp. 437-40.

    Google Scholar 

  80. H.G.F. Wilsdorft: Acta Metall. 1982, vol. 30, pp. 1247-52.

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank the Argonne National Laboratory in Chicago, IL, USA, for permitting the use of the HRTEM during the tensile stage and that of the environmental cell.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Rozenak.

Additional information

Manuscript submitted January 31, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozenak, P. Stress Induce Martensitic Transformations in Hydrogen Embrittlement of Austenitic Stainless Steels. Metall Mater Trans A 45, 162–178 (2014). https://doi.org/10.1007/s11661-013-1734-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1734-7

Keywords

Navigation