Skip to main content
Log in

Validation of Predicted Residual Stresses within Direct Chill Cast Magnesium Alloy Slab

  • Symposium: Neutron and X-Ray Studies of Advanced Materials IV
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A significant level of cold cracking has been observed within direct chill (DC) cast, high-strength magnesium alloy Elektron WE43. These cracks have been attributed to the formation of significant residual stresses during casting. A finite-element modeling (FEM) code, which is called ALSIM, has been used to predict the residual stress within the DC-cast slab. Verification of the predicted residual stress field within an 870 × 315-mm sized slab has been carried out using neutron diffraction measurements. Given that measurements in such large-scale components using diffraction measurements are particularly challenging and expensive, the efficient use of neutron diffraction measurements is emphasized. This has included the use of sectioning, allowing the residual stress within the slab to be mapped in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. B.L. Mordike: Mater. Sci. Eng. A, 2002, vol. 324, pp. 103–12.

    Article  Google Scholar 

  2. N.V. Ravi Kumar, J.J. Blandin, M. Suéry, and E. Grosjean: Scripta Mater., 2003, vol. 49, pp. 225–23.

    Article  CAS  Google Scholar 

  3. Suyitno, D.G. Eskin, and L. Katgerman: Mater. Sci. Eng. A, 2006, vol. 420, pp. 1–7.

  4. M. Lalpoor, D.G. Eskin, D. Ruvalcaba, H.G. Fjaer, A. Ten Cate, N. Ontijt, and L. Katgerman: Mater. Sci. Eng. A, 2011, vol. 528, No. 6, pp. 2831–42.

    Article  Google Scholar 

  5. D. Mortensen: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 119–33.

    Article  CAS  Google Scholar 

  6. ISO Standard: ISO/TS 21432:2005 Non-destructive testing—Standard Test Method for Determining Residual Stresses by Neutron Diffraction.

  7. J.-M. Drezet and A.B. Phillion: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3396–3404.

    Article  Google Scholar 

  8. H. Hao, D.M. Maijer, M.A. Wells, A. Phillion, and S.L. Cockcroft: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2067–77.

    Article  CAS  Google Scholar 

  9. J.R. Santisteban, M.R. Daymond, J.A. James, and L. Edwards: J. Appl. Cryst., 2006, vol. 39, pp. 812–25.

    Article  CAS  Google Scholar 

  10. A.C. Larson and R.B von Dreele: General Structure Analysis System, Los Alamos National Laboratory Report LAUR 86–748, 2004.

  11. G.S. Pawley: J. Appl. Cryst., 1981, vol. 14, pp. 357–61.

    Article  CAS  Google Scholar 

  12. M.E. Fitzpatrick and A. Lodini: Analysis or Residual Stress by Diffraction using Neutron and Synchrotron Diffraction, Taylor and Francis, London, UK, 2003.

    Google Scholar 

  13. ASM International: Metals Handbook, 10th ed., vol. 2, Properties & Selection—Nonferrous Alloys & Special-Purpose Materials, ASM International, Materials Park. OH, 1990.

  14. J.A. James, J.R. Santisteban, M.R. Daymond, and L. Edwards: Phys. B, 2004, vol. 350, pp. E743–46.

    Article  CAS  Google Scholar 

  15. M. Turski, J.F. Grandfield, T. Wilks, B. Davis, R. DeLorme, and K. Cho: Magnesium Technol., 2010, pp. 333–38.

  16. A.A. Luo, J.H. Forsmark, X. Sun, S.O. Shook, W.Z. Misiolek, and R.K. Mishra: Magnesium Technol., 2010, pp. 553–58.

  17. A.M. Tweir, J.D. Robson, G.W. Lorimer, and P. Rogers: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7247–56.

    Article  Google Scholar 

  18. O. Ludwig, J.-M. Drezet, P. Meneses, C.L. Martin, and M. Suery: Mater. Sci. Eng. A, 2005, vols. 413–414, pp. 174–79.

    Google Scholar 

  19. J. Sengupta, B.G. Thomas, and M.A. Wells: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 187–204.

    Article  CAS  Google Scholar 

  20. M.A. Wells, D. Li, and S.L. Cockcroft: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 929–39.

    Article  CAS  Google Scholar 

  21. M. Turski and L. Edwards: Int. J. Pres. Ves. Pip., 2010, vol. 86, pp. 126–31.

    Article  Google Scholar 

  22. S. Pratihar, M. Turski, L. Edwards, and P.J. Bouchard: Int. J. Press. Ves. Pip., 2010, vol. 86, pp. 126–31.

    Google Scholar 

  23. M.B. Prime: J. Eng. Mater. Tech., 2001, vol. 123, pp. 162–68.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to T. Hill and Dr. K.B. Chong for assistance with diffraction measurements. The experiment on ENGIN-X at the ISIS Pulsed Neutron and Muon Source was supported by a beam time allocation from the Science and Technology Facilities Council. Research was sponsored by ARL and was accomplished under Cooperative Agreement W911NF-07-2-0073. The views and conclusions made in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of ARL or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for government purposes notwithstanding any copyright notation hereon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Turski.

Additional information

Manuscript submitted February 9, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turski, M., Paradowska, A., Zhang, SY. et al. Validation of Predicted Residual Stresses within Direct Chill Cast Magnesium Alloy Slab. Metall Mater Trans A 43, 1547–1557 (2012). https://doi.org/10.1007/s11661-011-1077-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-1077-1

Keywords

Navigation