Skip to main content
Log in

Effect of Ternary Alloying Elements Addition on the Order-Disorder Transformation Temperatures of B2-Type Ordered Fe-Al-X Intermetallics

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of alloying element additions on B2↔A2 order-disorder phase transformation temperatures of B2-type ordered Fe0.5(Al1−n X n )0.5 intermetallics (X = Cr, Ni, Mo, Ta, Mn, Ti, and W) that readily form single-phase solid solution for X = 1 at. pct were investigated experimentally. It was shown that the type of the ternary substitutional alloying elements have a profound effect on the variation of order-disorder transition temperature of Fe0.5(Al1−n X n )0.5 alloys. Based on the magnitude of partial ordering energies of the Al-X and Fe-X atomic pairs, predicted normalized transition temperatures, ∆T/T o , were verified experimentally. Besides the normalized transition temperature, the relative partial ordering energy (RPOE) parameter, β, was also defined to estimate the extent of variation in B2↔A2 order-disorder phase transformation temperatures upon ternary alloying additions. The RPOE parameter, β, takes into account both the effects of magnitude of partial ordering energies of Al-X and Fe-X atomic pairs and also the lattice site occupation preferences of X element atoms over B2-type ordered Fe-Al sublattices. The alloying elements, which are preferentially distributed Fe sublattice sites, β > 0, and owing to β >> 1, are more effective in increasing order-disorder transformation temperature in Fe-Al (B2) intermetallics. On the contrary, alloying elements having β < 1 tend to decrease the transition temperature slightly relative to the binary FeAl intermetallic. The experimentally determined B2↔A2 order-disorder transition temperatures are in good qualitative or semiquantitative agreement with theoretical predictions for all X ternary alloying elements. Accordingly, the present experimental results confirm the validity of the theoretical model and calculations proposed in our previous study on the B2↔A2 order-disorder transition temperatures of single-phase Fe0.5(Al1−n X n )0.5 intermetallics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. D. Hardwick and G. Wallwork: Rev. High. Temp. Mater., 1978, vol. 4, pp. 47–74.

    CAS  Google Scholar 

  2. M.H. Yoo, S.L. Sass, C.L. Fu, M.J. Mills, D.M. Dimiduk, and E.P. George: Acta Metall. Mater., 1993, vol. 41, pp. 987–1002.

    Article  CAS  Google Scholar 

  3. S.C. Deevi and V.K. Sikka: Intermetallics, 1996, vol. 4, pp. 357–75.

    Article  CAS  Google Scholar 

  4. C.T. Liu, J. Stringer, J.N. Mundy, L.L. Horton, and P. Angelini: Intermetallics, 1997, vol. 5, pp. 579–96.

    Article  CAS  Google Scholar 

  5. N.S. Stoloff: Mater. Sci. Eng. A, 1998, vol. 258, pp. 1–14.

    Article  Google Scholar 

  6. N.S. Stoloff, C.T. Liu, and S.C. Deevi: Intermetallics, 2000, vol. 8, pp. 1313–20.

    Article  CAS  Google Scholar 

  7. M. Palm: Intermetallics, 2005, vol. 13, pp. 1286–95.

    Article  CAS  Google Scholar 

  8. F. Stein, M. Palm, and G. Sauthoff: Intermetallics, 2005, vol. 13, pp. 1275–85.

    Article  CAS  Google Scholar 

  9. C.T. Liu: Mater. Int. Met. Rev., 1984, vol. 29, pp. 168–94.

    Article  CAS  Google Scholar 

  10. C.G. Mckamey: Physical Metallurgy and Processing of Intermetallic Compounds, Chapman and Hall, New York, NY, 1996, pp. 351–91.

    Book  Google Scholar 

  11. C.T. Liu and J.O. Stiegler: Science, 1984, vol. 226, pp. 636–42.

    Article  CAS  Google Scholar 

  12. R.H. Titran, K.M. Vedula, and G.G. Anderson: Mater. Res. Soc. Symp. Proc., 1985, vol. 39, pp. 411–21.

    Google Scholar 

  13. A.O. Mekhrabov and M.V. Akdeniz: Acta Mater., 1999, vol. 47, pp. 2067–75.

    Article  CAS  Google Scholar 

  14. A.O. Mekhrabov and M. Doyama: Phys. Status Solidi (B), 1984, vol. 126, pp. 453–58.

  15. A.O. Mekhrabov, Z.M. Babaev, A.A. Katsnelson, and Z.A. Matysina: Fiz. Met. Metalloved., 1986, vol. 61, pp. 1089–93.

    CAS  Google Scholar 

  16. A.O. Mekhrabov: Fiz. Met. Metalloved., 1986, vol. 62, pp. 1023–25.

    CAS  Google Scholar 

  17. A.O. Mekhrabov: Turk. J. Eng. Environ. Sci., 1994, vol. 18, pp. 349–56.

    CAS  Google Scholar 

  18. A.O. Mekhrabov, M.V. Akdeniz, and M.M. Arer: Acta Mater., 1997, vol. 45, pp. 1077–83.

    Article  CAS  Google Scholar 

  19. A.O. Mekhrabov, A. Ressamoğlu, and T. Öztürk: J. Alloys Compd., 1994, vol. 205, pp. 147–55.

    Article  CAS  Google Scholar 

  20. M.V. Akdeniz and A.O. Mekhrabov: Acta Mater., 1998, vol. 46, pp. 1185–92.

    Article  CAS  Google Scholar 

  21. M.V. Akdeniz, A.O. Mekhrabov, and T. Yilmaz: Scripta Metall. Mater., 1994, vol. 31, pp. 1723–28.

    Article  CAS  Google Scholar 

  22. A.O. Mekhrabov, M.V. Akdeniz, and I. Aktürk: Stability of Materials, NATO ASI Series B: Physics, Plenum Press, New York, NY, 1996, vol. 355, pp. 681–86.

  23. M. Aykol, A.O. Mekhrabov, and M.V. Akdeniz: Intermetallics, 2010, vol. 18, pp. 893–99.

    Article  CAS  Google Scholar 

  24. M. Aykol, A.O. Mekhrabov, and M.V. Akdeniz: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 267–74.

    Article  CAS  Google Scholar 

  25. L. Anthony and B. Fultz: Acta Metall. Mater., 1995, vol. 43, pp. 3885–91.

    Article  CAS  Google Scholar 

  26. Y. Nishino, C. Kumada, and S. Asano: Scripta Mater., 1997, vol. 36, pp. 461–66.

    Article  CAS  Google Scholar 

  27. Y. Nishino, S. Asano, and T. Ogawa: Mater. Sci. Eng. A, 1997, vols. 234–236, pp. 271–74.

  28. F. Stein, A. Schneider, and G. Frommeyer: Intermetallics, 2003, vol. 11, pp. 71–82.

    Article  CAS  Google Scholar 

  29. I. Ohnuma, C.G. Schön, R. Kainuma, G. Inden, and K. Ishida: Acta Mater., 1998, vol. 46, pp. 2083–94.

    Article  CAS  Google Scholar 

  30. J.B. Cohen and J.E. Hillard: Local Atomic Arrangements Studied by X-Ray Diffraction, Metallurgical Society Conf., New York, NY, 1966, pp. 123–48.

    Google Scholar 

  31. M. Kupka: Intermetallics, 2006, vol. 14, pp. 149–55.

    Article  CAS  Google Scholar 

  32. F. Stein and M. Palm: Int. J. Mater. Res., 2007, vol. 98, pp. 580–88.

    Article  CAS  Google Scholar 

  33. U.R. Kattner and B.P. Burton: Phase Diagrams of Binary Alloys, ASM INTERNATIONAL, Materials Park, OH, 1993, pp. 12–28.

    Google Scholar 

  34. E. Schürmann and H.P. Kaiser: Arch. Eisenhuettenwes., 1980, vol. 51, pp. 325–27.

    Google Scholar 

  35. M.A. Krivoglaz and A. Smirnov: The Theory of Order-Disorder in Alloys, MacDonald, London, 1964.

Download references

Acknowledgments

The authors gratefully acknowledge the ÖYP Program at Middle East Technical University and The Scientific and Technological Research Council of Turkey, TUBITAK, National Scholarship Programme for postdoctoral students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vedat Akdeniz.

Additional information

Manuscript submitted June 14, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yildirim, M., Vedat Akdeniz, M. & Mekhrabov, A.O. Effect of Ternary Alloying Elements Addition on the Order-Disorder Transformation Temperatures of B2-Type Ordered Fe-Al-X Intermetallics. Metall Mater Trans A 43, 1809–1816 (2012). https://doi.org/10.1007/s11661-011-1059-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-1059-3

Keywords

Navigation