Skip to main content

Advertisement

Log in

Constitutive Model for Anisotropic Creep Behaviors of Single-Crystal Ni-Base Superalloys in the Low-Temperature, High-Stress Regime

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A crystallographic constitutive model is developed to capture orientation-sensitive primary and secondary creep behaviors within approximately 20 deg from the [0 0 1] orientation in single-crystal superalloys for the low-temperature and high-stress regime. The crystal plasticity-based constitutive formulations phenomenologically incorporate experimentally observed dislocation micromechanisms. Specifically, the model numerically delineates the nucleation, propagation, and hardening of a\( \langle 1 { 1 2} \rangle \) dislocations that shear multiple \( \gamma^{\prime } \) precipitates by creating extended stacking faults. Detailed numerical descriptions involve slip-system kinematics from a/2\( \langle 1 { 1 }0 \rangle \) dislocations shearing the \( \gamma \)-phase matrix, a\( \langle 1 { 1 2} \rangle \) stacking fault dislocation ribbons shearing the \( \gamma^{\prime } \)-phase precipitate, interactions between a/2\( \langle 1 { 1 }0 \rangle \) dislocations to nucleate a\( \langle 1 1 2\rangle \) dislocations, and interactions between the two types of dislocations. The new constitutive model was implemented in the finite-element method (FEM) framework and used to predict primary and secondary creep of a single-crystal superalloy CMSX-4 in three selected orientations near the [0 0 1] at 1023 K (750 °C) and 750 MPa. Simulation results showed a reasonable, qualitative agreement with the experimental data. The simulation results also indicated that a/2\( \langle 1 { 1 }0 \rangle \) matrix dislocations are important to limit the propagation of a\( \langle 1 { 1 2} \rangle \) dislocations, which leads to the transition to secondary creep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge Press, Cambridge, UK, 2006, pp. 171–87.

    Book  Google Scholar 

  2. Y. Koizumi, T. Yokokawa, H. Harada, and T. Kobayashi: J. Japan Inst. Met., 2006, vol. 70, pp. 176–79.

    Article  CAS  Google Scholar 

  3. N. Matan, D.C. Cox, P. Carter P, M.A. List, C.M.F. Rae, and R.C. Reed: Acta Mater., 1999, vol. 47, pp. 1549–63.

  4. C.M.F. Rae, N. Matan, D.C. Cox, M.A. Rist, and R.C. Reed: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2219–28.

    Article  CAS  Google Scholar 

  5. C.M.F. Rae, N. Matan, and R.C. Reed: Mater. Sci. Eng. A, 2001, vol. 300, pp. 125–34.

    Article  Google Scholar 

  6. G.L. Drew, R.C. Reed, K. Kakehi, and C.M.F. Rae: Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra and S. Walston, eds., TMS, Warrendale, PA, 2004, pp. 127–36.

  7. C.M.F. Rae and R.C. Reed: Acta Mater., 2007, vol. 55, pp. 1067–81.

    Article  CAS  Google Scholar 

  8. V.A. Vorontsov, C. Shen, Y. Wang, D. Dye, and C.M.F. Rae: Acta Mater., 2010, vol. 58, pp. 4110–19.

    Article  CAS  Google Scholar 

  9. N. Matan, D.C. Cox, C.M.F. Rae, and R.C. Reed: Acta Mater., 1999, vol. 47, pp. 2031–45.

    Article  CAS  Google Scholar 

  10. R.C. Reed, N. Matan, D.C. Cox DC, M.A. List MA, and C.M.F. Rae: Acta Mater., 1999, vol. 47, pp. 3367–81.

  11. A. Epishin and T. Link: Phil. Mag., 2004, vol. 84, pp. 1979–2000.

    Article  CAS  Google Scholar 

  12. T. Link, A. Epishin, M. Klaus, U. Bruckner, and A. Reznicek: Mater. Sci. Eng. A, 2005, vol. 405, pp. 254–65.

    Article  Google Scholar 

  13. Z.X. Zhang, J.C. Wang, H. Harada, and Y. Koizumi: Acta Mater., 2005, vol. 53, pp. 4623–33.

    Article  CAS  Google Scholar 

  14. P.M. Sarosi, R. Srinivasan, G.T. Eggeler, M.V. Nathal, and M.J. Mills: Acta Mater., 2007, vol. 55, pp. 2509–18.

    Article  CAS  Google Scholar 

  15. R.C. Reed, D.C. Cox, and C.M.F. Rae: Mater. Sci. Eng. A, 2007, vol. 448, pp. 88–96.

    Article  Google Scholar 

  16. D.M. Shah, S. Vega, S. Woodard, and A.D. Cetel: Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed RC, J.J. Schirra, and S. Walston, eds., TMS, Warrendale, PA, 2004, pp. 197–206.

  17. J.J. Gilman: Micromechanics of Flow in Solids, McGraw-Hill, New York, NY, 1969, pp. 195.

    Google Scholar 

  18. D.W. MacLachlan, L.W. Wright, S.S.K. Gunturi, and D.M. Knowles: Int. J. Plast., 2000, vol. 17, pp. 441–67.

    Article  Google Scholar 

  19. D.W. MacLachlan, S.S.K. Gunturi, and D.M. Knowles: Comp. Mater. Sci., 2002, vol. 25, pp. 129–41.

    Article  CAS  Google Scholar 

  20. D.W. MacLachlan and D.M. Knowles: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 385–98.

    Article  Google Scholar 

  21. D.W. MacLachlan and D.M. Knowles: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 399–409.

    Article  Google Scholar 

  22. A. Ma, D. Dye, and R.C. Reed: Acta Mater., 2008, vol. 56, pp. 1657–70.

    Article  CAS  Google Scholar 

  23. H. Mecking and U.F. Kocks: Acta Metall., 1981, vol. 29, pp. 1865–75.

    Article  CAS  Google Scholar 

  24. Y. Estrin and H. Mecking: Acta Metall., 1984, vol. 32, pp. 57–70.

    Article  Google Scholar 

  25. B. Fedelich: Int. J. Plast., 2002, vol. 18, pp. 1–49.

    Article  CAS  Google Scholar 

  26. D. Peirce, R.J. Asaro, and A. Needleman: Acta Metall., 1983, vol. 31, pp. 1951–76.

    Article  CAS  Google Scholar 

  27. W. Schneider, J. Jammer, and H. Mughrabi H: Superalloys 1992, S.D. Antolovich, R.W. Stusrud, R.A. MacKay, D.L. Anton DL, T. Khan, R.D. Kissinger, and D.L. Klarstrom, eds., TMS, Warrendale, PA, 1992, pp. 589–98.

  28. W. Schneider and H. Mughrabi: Creep and Fracture of Engineering Materials and Structures, B. Wilshire and R.W. Evans, eds., Institute of Metals, London, UK, 1993, pp. 209–20.

  29. H. Basoalto, S.K. Sondhi, B.F. Dyson, and M. McLean: Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston, eds., TMS, Warrendale, PA, 2004, pp. 897–906.

  30. U. Glatzel and M. Feller-Kniepmeier: Scripta Metall., 1991, vol. 25, pp. 1845–50.

    Article  CAS  Google Scholar 

  31. J. Harder: Int. J. Plast., 1999, vol. 15, pp. 605–24.

    Article  Google Scholar 

  32. L. Tabourot, M. Fivel, and E. Rauch: Mater. Sci. Eng. A, 1997, vols. 234–236, pp. 639–42.

    Google Scholar 

  33. A. Arsenlis and D.M. Parks: J. Mech. Phys. Solids, 2002, vol. 50, pp. 1979–2009.

    Article  CAS  Google Scholar 

  34. C.D. Allan: Ph.D. Dissertation, MIT, Cambridge, MA, 1995.

Download references

Acknowledgment

This work was supported initially by AVETEC, Springfield, OH through the AFOSR NALI program (Program Manager: Dr. J. Tiley of AFRL/RXLM). The authors are grateful to Drs. R. Dutton, S. Russ, and A. Rosenberger of AFRL/RXL for various supports throughout the project. Support from the AFRL/RXLM under contract # FA8650-10-D-5226 is acknowledged by Y.S.C. and T.A.P. Computations were performed using computer resources at the Ohio Supercomputer Center (grant no. PAS0647, Professor G. Daehn of The Ohio State University). This research was also supported in part by a grant of computer resources at the AFRL-DSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon Suk Choi.

Additional information

Manuscript submitted August 25, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, Y.S., Parthasarathy, T.A., Woodward, C. et al. Constitutive Model for Anisotropic Creep Behaviors of Single-Crystal Ni-Base Superalloys in the Low-Temperature, High-Stress Regime. Metall Mater Trans A 43, 1861–1869 (2012). https://doi.org/10.1007/s11661-011-1047-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-1047-7

Keywords

Navigation