Skip to main content
Log in

Corrosion-Fatigue Behavior of Aluminum Alloy 5083-H131 Sensitized at 448 K (175 °C)

  • Symposium: Fatigue & Corrosion Damage in Metallic Materials
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The fatigue crack growth behavior of aluminum alloy 5083-H131 has been systematically studied as a function of degree of sensitization for aging at 448 K (175 °C). Fatigue crack growth rates were measured at load ratios of 0.1 and 0.85, in vacuum, air, and a corrosive aqueous environment containing 1 pct NaCl with dilute inhibitor. Sensitization does not affect the fatigue crack growth behavior of Al 5083-H131 significantly in vacuum or air, at low- or high-load ratio. For high-load ratio, in the 1 pct NaCl+inhibitor solution, the threshold drops by nearly 50 pct during the first 200 hours of aging, then it degrades more slowly for longer aging times up to 2000 hours. The change in aging behavior at approximately 200 hours seems to be correlated with the transition from partial coverage of the grain boundaries by β Al3Mg2 phase, to continuous full β coverage. ASTM G-67 mass loss levels below approximately 30 mg/cm2 do not exhibit degraded corrosion-fatigue properties for R = 0.85, but degradation of the threshold is rapid for higher mass loss levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. E.L. Huskins, B. Cao, K.T. Ramesh: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1292-98.

    Article  Google Scholar 

  2. R.A. Sielski: Ships and Offshore Structures, 2008, vol. 3, pp. 57-65.

    Article  Google Scholar 

  3. W.G. Babcock and E.J. Czyryca: AMPTIAC Quart., 2003, vol. 7, no. 3, pp. 31-36.

    Google Scholar 

  4. G.C. Blaze: Alcoa Green Letter: The 5000 Series Alloys Suitable for Welded Structural Applications, Aluminum Corporation of America, New Kensington, PA, 1972.

    Google Scholar 

  5. E.H. Dix, W.A. Anderson, and M.B. Shumaker: Corrosion, 1959, vol. 15, no. 2, pp. 19-26.

    Google Scholar 

  6. J.L. Searles, P.I. Gouma, and R.G. Buchheit: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2859-67.

    Article  CAS  Google Scholar 

  7. R.H. Jones, D.R. Bauer, M.J. Danielson, and J.S. Vetrano: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1699-1711.

    Article  CAS  Google Scholar 

  8. F.S. Bovard: Corrosion in Marine and Saltwater Environments II, Eds. D.A. Shifler, T. Tsuru, P.M. Natishan, and S. Ito, vols. 2004–2014, Electrochemical Society, Pennington, NJ, 2005, pp. 232–243.

  9. C.R. Wong, G.P. Mercier, and J.J. Deloach: SeaFrame, 2007, vol. 3, no. 2, pp. 18-20.

    Google Scholar 

  10. N. Birbilis and R.G. Buchheit: J. Electrochem. Soc., 2005, vol. 152, pp. B140-51.

    Article  CAS  Google Scholar 

  11. R.H. Jones: J. Met., 2003, vol. 55, no. 2, pp. 42–46.

    CAS  Google Scholar 

  12. M. Fellerkniepmeier, K. Detert, and L. Thomas: Z. Metallkunde, 1964, vol. 55, pp. 83-87.

    CAS  Google Scholar 

  13. P.N.T. Unwin and R.B. Nicholson: Acta Metall., 1969, vol. 17, pp. 1379-93.

    Article  CAS  Google Scholar 

  14. L.I. Kaygorodova, B.N. Balandin, and N.N. Buynov: Phys. Met. Metall., 1985, vol. 59, pp. 126-30.

    Google Scholar 

  15. T. Sato and A. Kamio: Mater. Sci. Eng. A, 1991, vol. A146, pp. 161-80.

    CAS  Google Scholar 

  16. H. Inagaki: Z. Metallkunde, 2005, vol. 96, pp. 45-53.

    CAS  Google Scholar 

  17. A.J. Davenport, Y. Yuan, R. Ambat, B.J. Connolly, M. Strangwood, A. Afseth, and G. Scamans: Mater. Sci. Forum, 2006, vols. 519-521, pp. 641-46.

    Article  Google Scholar 

  18. M.F. Komarova, N.N. Buinov, and L.I. Kaganovi: Phys. Met. Metall., 1973, vol. 36, pp. 358-64.

    CAS  Google Scholar 

  19. S. Osaki: Technology Reports of the Yamaguchi University, 1974, vol. 1, no. 3, pp. 347-48.

    Google Scholar 

  20. J.R. Pickens, J.R. Gordon, and J.A.S. Green: Metall. Trans. A, 1983, vol. 14A, pp. 925-30.

    Google Scholar 

  21. M. Popovic and E. Romhanji: J. Mater. Process. Technol., 2002, vols. 125–126, pp. 275–80.

  22. R.H. Jones, J.S. Vetrano, and C.F. Windisch: Corrosion, 2004, vol. 60, pp. 1144-54.

    Article  CAS  Google Scholar 

  23. I.N.A. Oguocha, O.J. Adigun, and S. Yannacopoulos: J. Mater. Sci., 2008, vol. 43, pp. 4208-14.

    Article  CAS  Google Scholar 

  24. L. Tan and T.R. Allen: Corros. Sci., 2010, vol. 52, pp. 548-54.

    Article  CAS  Google Scholar 

  25. J. Gao and D.J. Quesnel: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 356-64.

    Article  Google Scholar 

  26. C.B. Crane and R. Gangloff: DoD Corrosion Conf. Proc., NACE International, Houston, TX, Paper 20175, 2011, in press.

  27. J.K. Brosi and J.J. Lewandowski: Scripta Mater., 2010, vol. 63, pp. 799-802.

    Article  CAS  Google Scholar 

  28. C. Menzemer and T.S. Srivatsan: Mater. Sci. Eng. A, 1999, vol. A271, pp. 188-95.

    CAS  Google Scholar 

  29. K. Van Kranenburg, T. Riemslag, J. Zuidema, S. Benedictus-de Vries, and F. Veer: Mater. Sci., 2001, vol. 37, pp. 970-74.

    Article  Google Scholar 

  30. F. Ford: Corrosion, 1979, vol. 35, pp. 281-87.

    CAS  Google Scholar 

  31. J.K. Donald: Fracture Mechanics Characterization of Aluminum Alloys for Marine Structural Applications, SSC-448, Ship Structure Committee, Washington, DC, 2007.

  32. P.S. Pao, R. Goswami, R.A. Bayles, T.M. Longazel, and R.L. Holtz: Fatigue of Materials—Advances and Emergences of Understanding, Eds. T.S. Srivatsan and M.A. Imam, Wiley, Hoboken, NJ, 2010, pp. 85–92.

  33. J.S. Montgomery and E.S. Chin: AMPTIAC Quart., 2004, vol. 8, no. 4, pp. 15-20.

    CAS  Google Scholar 

  34. R.L. Holtz, P.S. Pao, R.A. Bayles, T.M. Longazel, and R. Goswami: DoD Corrosion Conference Proceedings, NACE International, Houston, TX, Paper 20421, 2011, in press.

  35. R. Goswami, G. Spanos, P.S. Pao, and R.L. Holtz: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 348-55.

    Article  Google Scholar 

  36. R. Goswami, G. Spanos, P.S. Pao, and R.L. Holtz: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1089-95.

    Article  Google Scholar 

  37. ASTM E647-05, Standard Test Method for Measurement of Fatigue Crack Growth Rates, 2005.

  38. D.O. Sprowls, M.B. Shumaker, J.D. Walsh, and J.W. Coursen: “Evaluation of Stress Corrosion Cracking Susceptibility using Fracture Mechanics Techniques,” Final Report, Contract Number NAS 8-21487, May 1973, Alcoa Laboratories, Pittsburgh, PA.

  39. M. Liu, P. Schmutz, S. Zanna, A. Seyeux, H. Ardelean, G. Song, A. Atrens, and P. Marcus: Corros. Sci., 2010, vol. 52, pp. 562-78.

    Article  CAS  Google Scholar 

  40. Z. Xing, S. Yujui, and T. Mingjing: Int. J. Fatigue, 1991, vol. 13, pp. 69-72.

    Article  CAS  Google Scholar 

  41. C.J. van der Wekken and M. Jassen: J. Electrochem. Soc., 1991, vol. 138, pp. 2891-96.

    Article  Google Scholar 

  42. S. Suresh: Fatigue of Materials, 1st ed., Cambridge University Press, New York, NY, 1991, pp. 245-47.

    Google Scholar 

  43. Z.M. Gasem and R.P. Gangloff: Chemistry and Electrochemistry of Corrosion and Stress Corrosion Cracking: A Symposium Honoring the Contributions of R.W. Steahle, Ed. R.H. Jones, TMS, Warrendale, PA, 2001, pp. 501–21.

  44. J.S. Warner, S. Kim, and R.P. Gangloff: Int. J. Fatigue, 2009, vol. 31, pp. 1952-65.

    Article  CAS  Google Scholar 

  45. R.H. Jones, V.Y. Gertsman, J.S. Vetrano, and C.F. Windisch: Scripta Mater., 2004, vol. 50, pp.1355-59.

    Article  CAS  Google Scholar 

  46. ASTM E 1681-03, “Standard Test Method for Determining Threshold Stress Intensity Factor for Environment-Assisted Cracking of Metallic Materials,” 2003.

  47. F.S. Bovard: Alcoa Center, PA, Private communication, 2010.

  48. S. Suresh: Fatigue of Materials, 1st ed., Cambridge University Press, New York, NY, 1991, pp. 380-82.

    Google Scholar 

  49. L. Hagn: Mater. Sci. Eng. A, 1988, vol. A103, pp.193-205.

    CAS  Google Scholar 

  50. R.P. Wei: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 845-54.

    Article  Google Scholar 

  51. I.P. Gnyp and V.I. Pokhmursky: Mater. Sci., 1994, vol. 30, pp. 621-35.

    Article  Google Scholar 

  52. R.P. Wei and G.W. Simmons: Int. J. Fract., 1981, vol. 17, pp. 235-47.

    Article  CAS  Google Scholar 

  53. K. Sadananda and A.K. Vasudevan: Int. J. Fatigue, 2004, vol. 26, pp. 39-47.

    Article  Google Scholar 

  54. K. Sadananda, A.K. Vasudevan, and R.L. Holtz: Int. J. Fatigue, 2001, vol. 23, pp. S277-86.

    Article  Google Scholar 

  55. K. Sadananda, A.K. Vasudevan, and I.W. Kang: Acta Mater., 2003, vol. 51, pp. 3399-3414.

    Article  CAS  Google Scholar 

  56. K. Sadananda and A.K. Vasudevan: Int. J. Fatigue, 2005, vol. 27, pp. 1255-66.

    Article  CAS  Google Scholar 

  57. K. Sadananda and A.K. Vasudevan: Fatigue Frac. Eng. Mater. Struct., 2003, vol. 26, pp. 835-45.

    Article  CAS  Google Scholar 

  58. ASTM G-67-04, “Standard Test Method for Determining the Susceptibility to Intergranular Corrosion of 5XXX Series Aluminum Alloys by Mass Loss After Exposure to Nitric Acid (NAMLT Test),” 2004.

Download references

Acknowledgments

The authors are grateful to Dr. Francine Bovard of Alcoa for providing the material used in this study and basic stress corrosion cracking threshold characterization. Co-author R. Goswami is under contract with the Naval Research Laboratory. This work was funded in part by the Office of Naval Research, Dr. Lawrence Kabacoff, Program Officer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald L. Holtz.

Additional information

Manuscript submitted March 31, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holtz, R.L., Pao, P.S., Bayles, R.A. et al. Corrosion-Fatigue Behavior of Aluminum Alloy 5083-H131 Sensitized at 448 K (175 °C). Metall Mater Trans A 43, 2839–2849 (2012). https://doi.org/10.1007/s11661-011-0866-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0866-x

Keywords

Navigation