Skip to main content
Log in

Al-to-Mg Friction Stir Welding: Effect of Material Position, Travel Speed, and Rotation Speed

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Because joining dissimilar metals is often difficult by fusion joining, interest has been growing rapidly in using friction stir welding (FSW), which is considered a revolutionary solid-state welding process, as a new way to join dissimilar metals such as Al alloys to Mg alloys, Cu, and steels. Butt FSW of Al to Mg alloys has been studied frequently recently, but the basic issue of how the welding conditions affect the resultant joint strength still is not well understood. Using the widely used alloys 6061 Al and AZ31 Mg, the current study investigated the effect of the welding conditions, including the positions of Al and Mg with respect to the welding tool, the tool travel speed, and the tool rotation speed on the weld strength. Unlike previous studies, the current study (1) determined the heat input by both torque and temperature measurements during FSW, (2) used color metallography with Al, Mg, Al3Mg2, and Al12Mg17 all shown in different colors to reveal clearly the formation of intermetallic compounds and material flow in the stir zone, which are known to affect the joint strength significantly, and (3) determined the windows for travel and rotation speeds to optimize the joint strength for various material positions. The current study demonstrated clearly that the welding conditions affect the heat input, which in turn affects (1) the formation of intermetallics and even liquid and (2) material flow. Thus, the effect of welding conditions in Al-to-Mg butt FSW on the joint strength now can be explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. C. Conrardy: 8 th Int. Conf. on Trends in Welding Research, Pine Mountain, GA, 2008.

  2. K. Nakada and M. Ushio: J. Jpn. Weld Soc., 2002, vol. 71, no. 6, pp. 6–9.

    Google Scholar 

  3. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, and C.J. Dawes: Patent International 9 125 978.8, 1991.

  4. A.A. McLean, G.L.F. Powell, I.H. Brown, and V.M. Linton: STWJ, 2003, vol. 8, no. 6, pp. 462–64.

    Google Scholar 

  5. S. Hirano, K. Okamoto, M. Doi, H. Okamura, M. Inagaki, and Y. Aono: Weld. Int., 2004, vol. 18, no. 9, pp. 702–08.

    Article  Google Scholar 

  6. H. Okamura and K. Aota: Weld. Int., 2004, vol. 18, no. 11, pp. 852–60.

    Article  Google Scholar 

  7. A.C. Somasekharan and L.E. Murr: Mater. Charact., 2004, vol. 52, pp. 49–64.

    Article  CAS  Google Scholar 

  8. A.C. Somasekharan and L.E. Murr: J. Mater. Sci., 2006, vol. 41, pp. 5365–70.

    Article  CAS  ADS  Google Scholar 

  9. Y. Sato, S.H.C. Park, M. Michiuchi, and H. Kokawa: Scripta Mater., 2004, vol. 50, pp. 1233–36.

    Article  CAS  Google Scholar 

  10. J. Yan, Z. Xu, Z. Li, L. Li, and S. Yang: Scripta Mater., 2005, vol. 53, pp. 585–89.

    Article  CAS  Google Scholar 

  11. R. Zettler, J.F. Dos Santos, A. Blanco, and A. da Silva: Proc. 7 th Int. Conf. on Trends in Welding Research, ASM International, Pine Mountain, GA, 2005, pp. 413–19.

  12. R. Zettler, A.A.M. da Silva, S. Rodrigues, A. Blanco, and J.F. de Santos: Adv. Eng. Mater., 2006, vol. 8, no. 5, pp. 415–21.

    Article  CAS  Google Scholar 

  13. Y.J. Kwon, I. Shigematsu, and N. Sato: Mater. Lett., 2008, vol. 62, pp. 3827–29.

    Article  CAS  Google Scholar 

  14. A. Kostka, R.S. Coelho, J. dos Santos, and A.R. Pyzalla: Scripta Mater., 2009, in press.

  15. C. Liu, D.L. Chen, S. Bhole, X. Cao, and M. Jahazi: Mater. Charact., 2009, vol. 60, pp. 370–76.

    Article  CAS  Google Scholar 

  16. P. Venkateswaran, Z. Xu, X. Li, and A.P. Reynolds: J. Mater. Sci., 2009, vol. 44, pp. 4140–47.

    Article  CAS  ADS  Google Scholar 

  17. V. Firouzdor and S. Kou: Weld. J., 2009, vol. 88, pp. 213s-24s.

    Google Scholar 

  18. Y.K. Yang, H. Dong, H. Cao, Y.A. Chang, and S. Kou: Weld. J., 2008, vol. 87, pp. 167s-77s.

    Google Scholar 

  19. Y.K. Yang, H. Dong, and S. Kou: Weld. J., 2008, vol. 87, pp. 202s-11s.

    Google Scholar 

  20. G. Cao and S. Kou: Weld. J., 2005, vol. 84, pp. 1s-8s.

    Google Scholar 

  21. S. Kou: Welding Metallurgy, 2nd ed., Wiley, New York, NY, 2003, pp. 303–39.

    Google Scholar 

  22. American Society for Metals: Binary Alloy Phase Diagrams, vol. 1, ASM, Materials Park, OH, 1986, p. 106.

    Google Scholar 

  23. J.J. Pepe and W.F. Savage: Weld. J., 1967, vol. 46, no. 9, pp. 411s-22s.

    CAS  Google Scholar 

  24. J.J. Pepe and W.F. Savage: Weld. J., 1970, vol. 49, no. 12, pp. 545s-53s.

    Google Scholar 

  25. J.W. Pew, T.W. Nelson, and C.D. Sorensen: STWJ, 2007, vol. 12, pp. 341–47.

    Google Scholar 

  26. A.P. Gerlich: Ph.D. Dissertation, University of Toronto, Toronto, ON, Canada, 2007.

  27. R. Nandan, G.G. Roy, and T. DebRoy: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1247–59.

    Article  CAS  Google Scholar 

  28. R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia: Progr. Mater. Sci., 2008, vol. 53, pp. 980–1023.

    Article  CAS  Google Scholar 

  29. J.H. Cho, D.E. Boyce, and P.R. Dawson: Mater. Sci. Eng. A, 2005, vol. 398, pp. 146–63.

    Article  Google Scholar 

  30. J.H. Cho, D.E. Boyce, and P.R. Dawson: Mater. Sci. Eng., 2007, vol. 15, pp. 469–86.

    CAS  Google Scholar 

  31. L. Commin, M. Dumont, J.-E. Masse, and L. Barrallier: Acta Mater., 2009, vol. 57, pp. 326–34.

    Article  CAS  Google Scholar 

  32. V. Firouzdor and S. Kou: Metall. Mater. Trans. A, in press.

Download references

Acknowledgments

This work was supported by the Wisconsin Alumni Research Foundation (WARF) of the University of Wisconsin-Madison. The helpful comments and suggestions made by the reviewers of the manuscript are highly appreciated. The authors would like to thank Professor F.E. Pfefferkorn and his graduate student A. Fehrenbacher of the Mechanical Engineering Department for their assistance in the measurements of torque and forces during FSW. They also would like to thank Dr. John H. Fournelle of the Department of Geoscience for his assistance in EPMA and SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sindo Kou.

Additional information

Manuscript submitted March 1, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Firouzdor, V., Kou, S. Al-to-Mg Friction Stir Welding: Effect of Material Position, Travel Speed, and Rotation Speed. Metall Mater Trans A 41, 2914–2935 (2010). https://doi.org/10.1007/s11661-010-0340-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0340-1

Keywords

Navigation