Skip to main content

Advertisement

Log in

Development of Mn-Cr-(C-N) Corrosion Resistant Twinning Induced Plasticity Steels: Thermodynamic and Diffusion Calculations, Production, and Characterization

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this work, the development of corrosion-resistant twinning induced plasticity steels is presented, supported by thermodynamic and diffusion calculations within the (Fe-Mn-Cr)-(C-N) alloy system. For the calculations, ambient pressure and primary austenitic solidification were considered as necessary to avoid nitrogen degassing in all processing steps. Manganese is used as an austenite stabilizer, chromium is used to increase nitrogen solubility and provide corrosion resistance, and carbon and nitrogen are used as interstitial elements to provide mechanical strength. Isopleths of the different elements vs temperature as well as isothermal sections were calculated to determine the proper amount of Mn, Cr, total interstitial content, and the C/N ratio. Scheil and diffusion calculations were used to predict the extent of microsegregations and additionally to evaluate the effect of diffusion annealing treatments. The materials were produced in laboratory scale, being followed by thermomechanical processing and the characterization of the microstructure. Tensile tests were performed with three different alloys, exhibiting yield strengths of 460 Mpa to 480 MPa and elongations to fracture between 85 pct and 100 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Kim, D. Han, S. Baik, and Y. Lee: Mater. Sci. Eng A, 2004, vol. 378, pp. 323–27.

    Article  Google Scholar 

  2. G. Frommeyer, U. Brux , and P. Neumann: ISIJ Int., 2003, vol. 43, no. 3, pp. 438–46.

    Article  CAS  Google Scholar 

  3. S. Zaefferer, J. Ohlert, and W. Bleck: Acta Mater., 2004, vol. 52, pp. 2765–78.

    Article  CAS  Google Scholar 

  4. D. Barbier, N. Gey, S. Allain, and N. Bozzolo: Mater. Sci. Eng. A, 2009, vol. 500, pp. 196–206.

    Article  Google Scholar 

  5. J.C. Altstetter, P.A. Bentley, J.W. Fourie, and N.A. Kirkbride, Mater. Sci. Eng. 1986, vol. 82, pp. 13–25.

    Article  CAS  Google Scholar 

  6. S.Y. Zhang and X.M. Zhu: Corrosion Sci., 1999, vol. 41, pp. 1817–33.

    Article  CAS  Google Scholar 

  7. M. Bobby Kannan, K.R. Singh Raman, and S. Khoddam: Corrosion Sci., 2008, vol. 50, pp. 2879–84.

    Article  Google Scholar 

  8. K. Sato, M. Ichinose, Y. Hirotsu, and Y. Inoue: ISIJ Int., 1989, vol. 29, pp. 868–77.

    Article  CAS  Google Scholar 

  9. O. Grassel, L. Kruger, G. Frommeyer, L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391–409.

    Article  CAS  Google Scholar 

  10. G. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7A, pp. 1897–904.

    CAS  ADS  Google Scholar 

  11. S. Allain, P.J. Chateau, O. Bouaziz, S. Migot, and N. Guelton: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 158–62.

    Google Scholar 

  12. K. Ishida: Phys. Stat. Sol. A, 1976, vol. 36, pp. 717–28.

    Article  CAS  ADS  Google Scholar 

  13. A.I. Yakubtsov, A. Ariapour, and D.D. Perovic: Acta Mater., 1999, vol. 41, no. 4, pp. 1271–79.

    Article  CAS  Google Scholar 

  14. Y. Lee and C. Choi: Metall. Mater. Trans A, 2000, vol. 31A, pp. 355–60.

    Article  CAS  Google Scholar 

  15. N.Y. Petrov: Scripta Mater., 2005, vol. 53, no. 10, pp. 1201–06.

    Article  CAS  Google Scholar 

  16. S. Kibey, B.J. Liu, J.M. Curtis, D.D. Johnson, and H. Sehitoglu: Acta Mater., 2006, vol. 54, no. 11, pp. 2991–3001.

    Article  CAS  Google Scholar 

  17. H. Berns, G.V. Gavriljuk, S. Riedner, and I.A. Tyshchenko: Steel Res., 2007, vol. 78, no. 9, pp. 714–19.

    CAS  Google Scholar 

  18. G.V. Gavriljuk, and H. Berns: High Nitrogen Steels: Structure, Properties, Manufacture, Applications, Springer, Berlin, Germany, 1999.

    Google Scholar 

  19. G.V. Gavriljuk, D.B. Shanina, and H. Berns: Mater. Sci. Eng. A, 2008, vols. 481–482, pp. 707–12.

    Google Scholar 

  20. B. Shanina, G.V. Gavriljuk, and H. Berns: Steel Res., 2007, vol. 78, no. 9, pp. 724–28.

    CAS  Google Scholar 

  21. D.B. Shanina, G.V. Gavriljuk: Mater. Sci. Forum, 2010, vols. 638–642, pp. 3015–20.

    Article  Google Scholar 

  22. G.V. Gavriljuk, I.A. Tyshchenko, N.O. Razumov, N.Y. Petrov, D.B. Shanina, H. Berns: Mater. Sci. Eng. A, 2006, vol. 420, nos. 1–2, pp. 47–54.

    Google Scholar 

  23. G.V. Gavriljuk, D.B. Shanina, H. Berns: Acta Mater., 2008, vol. 56, no. 18, pp. 5071–82.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laís Mújica Roncery.

Additional information

Manuscript submitted December 4, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mújica Roncery, L., Weber, S. & Theisen, W. Development of Mn-Cr-(C-N) Corrosion Resistant Twinning Induced Plasticity Steels: Thermodynamic and Diffusion Calculations, Production, and Characterization. Metall Mater Trans A 41, 2471–2479 (2010). https://doi.org/10.1007/s11661-010-0334-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0334-z

Keywords

Navigation