Skip to main content
Log in

Gigacycle Fatigue Properties of Hydrogen-Charged JIS-SCM440 Low-Alloy Steel Under Ultrasonic Fatigue Testing

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Gigacycle fatigue tests were conducted on hydrogen-charged low-alloy steel. In this study, high- and low-strength specimens were prepared to investigate the effects of hydrogen on internal and surface fractures, respectively. The fatigue tests were conducted mainly by ultrasonic fatigue testing at 20 kHz and additionally by conventional servohydraulic fatigue testing at 50 Hz. All high-strength specimens revealed internal fractures. The fatigue strength of the hydrogen-charged specimens was much lower than that of the uncharged specimens. In the low-strength specimens, the uncharged specimens revealed surface fractures in the short-life regions in addition to internal fractures in the long-life regions. However, the hydrogen-charged specimens revealed internal fractures only that were combined with a much lower fatigue strength. The difference in fracture surfaces was small between the hydrogen-charged and the uncharged specimens, whereas the optically dark areas of the hydrogen-charged specimens seemed smaller than those of the uncharged specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Murakami: Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions, Elsevier, London, UK, 2002.

    Google Scholar 

  2. P.H. Frith: J. Iron Steel Inst., 1955, vol. 180, p. 26.

    Google Scholar 

  3. H. Emura and K. Asami: Trans. JSME, 1989, vol. 55, pp. 45–50.

    CAS  Google Scholar 

  4. Y. Murakami, M. Takada, and T. Toriyama: Int. J. Fatigue, 1998, vol. 16, pp. 661–67.

    Article  Google Scholar 

  5. S. Nishijima and K. Kanazawa: Fatigue Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 601–07.

    Article  CAS  Google Scholar 

  6. T. Sakai, M. Takeda, N. Tanaka, M. Kanemitsu, N. Oguma, and K. Shiozawa: Trans. JSME Ser. A, 2001, vol. 67, pp. 1805–12.

    Google Scholar 

  7. K. Shiozawa, L.T. Lu, and S. Ishihara: Fatigue Fract. Eng. Mater. Struct., 2001, vol. 24, pp. 781–90.

    Article  CAS  Google Scholar 

  8. K. Tanaka and Y. Akiniwa: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 775–84.

    Article  CAS  Google Scholar 

  9. Y. Ochi, T. Matsumura, K. Masaki, and S. Yoshida: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 823–30.

    Article  CAS  Google Scholar 

  10. T. Abe, Y. Furuya, and S. Matsuoka: Fatigue Fract. Eng. Mater. Struct., 2004, vol. 27, pp. 159–67.

    Article  CAS  Google Scholar 

  11. H. Mayer, W. Haydn, R. Schuller, S. Issler, and M. Bacher-Höchst: Int. J. Fatigue, 2009, vol. 31, pp. 1300–08.

    Article  CAS  Google Scholar 

  12. Y. Murakami, T. Nomoto, and T. Ueda: Fatigue Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 581–90.

    Article  CAS  Google Scholar 

  13. Y. Murakami, N.N. Yokoyama, and J. Nagata: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 735–46.

    Article  CAS  Google Scholar 

  14. H.L. Wilson and M. Baskes: J. Nucl. Mater., 1978, vol. 76, pp. 291–97.

    Article  ADS  Google Scholar 

  15. W.Y. Choo and J.Y. Lee: Metall. Trans. A, 1982, vol. 13A, pp. 135–40.

    CAS  ADS  Google Scholar 

  16. M. Nagumo, K. Ohta, and H. Saitoh: Scripta Mater., 1999, vol. 40, pp. 313–19.

    Article  CAS  Google Scholar 

  17. H.H. Johnson, J.G. Morlet, and A.R. Troiano: Trans. TMS AIME, 1958, vol. 212, pp. 528–36.

    CAS  Google Scholar 

  18. Y. Kimura, Y. Sakai, T. Hara, A. Belyakov, and K. Tsuzaki: Scripta Mater., 2003, vol. 49, pp. 1111–16.

    Article  CAS  Google Scholar 

  19. M. Wang, E. Akiyama, and K. Tsuzaki: Mater. Sci. Eng. A, 2005, vol. 398, pp. 37–46.

    Article  Google Scholar 

  20. N. Yasumaru, K. Tsuchida, E. Saji, and T. Ibe: Mater. Trans., 1993, vol. 34, pp. 696–702.

    Google Scholar 

  21. H.J.C. Voorwald, R. Padiha, M.Y.P. Costa, W.L. Pigatin, and M.O.H. Cioffi: Int. J. Fatigue, 2007, vol. 29, pp. 695–704.

    Article  CAS  Google Scholar 

  22. W.P. Mason: J. Acoust. Soc. Am., 1956, vol. 28, pp. 1207–18.

    Article  ADS  Google Scholar 

  23. H. Kuhn and D. Medlin: ASM Handbook, Vol. 8, Mechanical Testing and Evaluation, ASM INTERNATIONAL, Materials Park, OH, 2000, pp. 717–29.

    Google Scholar 

  24. H. Mayer: Int. Mater. Rev., 1999, vol. 44, pp. 1–34.

    CAS  ADS  Google Scholar 

  25. H. Ishii, T. Yagasaki, and H. Akagi: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 831–35.

    Article  CAS  Google Scholar 

  26. C. Bathias and P.C. Paris: Gigacycle Fatigue in Mechanical Practice, Marcel Decker, New York, NY, 2004.

    Google Scholar 

  27. Y. Furuya, S. Matsuoka, T. Abe, and K. Yamaguchi: Scripta Mater., 2002, vol. 46, pp. 157–62.

    Article  CAS  Google Scholar 

  28. Y. Furuya, T. Abe, and S. Matsuoka: Fatigue Fract. Eng. Mater. Struct., 2003, vol. 26, pp. 641–45.

    Article  Google Scholar 

  29. Y. Furuya: Scripta Mater., 2008, vol. 58, pp. 1014–17.

    Article  CAS  Google Scholar 

  30. E. Takeuchi, Y. Furuya, N. Nagashima, and S. Matsuoka: Fatigue Fract. Eng. Mater. Struct., 2008, vol. 31, pp. 599–605.

    Article  CAS  Google Scholar 

  31. Y. Murakami and J. Nagata: Trans. JSME Ser. A, 2004, vol. 70, pp. 1093–101.

    Google Scholar 

  32. Y. Murakami and J. Nagata: J. Soc. Mater. Sci. Jpn., 2005, vol. 54, pp. 420–27.

    Article  CAS  Google Scholar 

  33. T.B. Mclaren and A.W. Thompson: Mater. Sci. Eng., 1983, vol. 57, pp. L21–25.

    Article  CAS  Google Scholar 

  34. H. Ouchi, J. Kobayashi, T. Ishikawa, H. Takezawa, R. Ebara, and Y. Yamada: Tetsu-to-Hagane, 1994, vol. 80, pp. 475–80. In Japanese.

    CAS  Google Scholar 

  35. J.H. Chuang, L.W. Tsay, and C. Chen: Int. J. Fatigue, 1998, vol. 20, pp. 531–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported partially by the NEDO Fundamental Research Project on Advanced Hydrogen Science (2006–2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiyuki Furuya.

Additional information

Manuscript submitted August 10, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furuya, Y., Hirukawa, H. & Hayakawa, M. Gigacycle Fatigue Properties of Hydrogen-Charged JIS-SCM440 Low-Alloy Steel Under Ultrasonic Fatigue Testing. Metall Mater Trans A 41, 2248–2256 (2010). https://doi.org/10.1007/s11661-010-0307-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0307-2

Keywords

Navigation