Skip to main content
Log in

Mechanical Behavior and Microstructural Change of a High Nitrogen CrMn Austenitic Stainless Steel during Hot Deformation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The hot deformation behavior of a high nitrogen CrMn austenitic stainless steel in the temperature range 1173 to 1473 K (900 to 1200 °C) and strain rate range 0.01 to 10 s−1 was investigated using optical microscopy, stress-strain curve analysis, processing maps, etc. The results showed that the work hardening rate and flow stress decreased with increasing deformation temperature and decreasing strain rate in 18Mn18Cr0.5N steel. The dynamic recrystallization (DRX) grain size decreased with increasing Z value; however, deformation heating has an effect on the DRX grain size under high strain rate conditions. In the processing maps, flow instability was observed at higher strain rate regions (1 to 10 s−1) and manifested as flow localization near the grain boundary. Early in the deformation, the flow instability region was at higher temperatures, and then the extent of this unstable region decreased with increasing strain and was restricted to lower temperatures. The hot deformation equation as well as the quantitative dependence of the critical stress for DRX and DRX grain size on Z value was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.O. Speidel: High Nitrogen Steel 1988 Conf., J. Foct and A. Hendry, eds., Institute of Metals, London, 1989, pp. 92–99.

    Google Scholar 

  2. J. Menzel, G. Stein, and P. Dahlmann: High-Nitrogen Steels ’90, Proc. 3rd Int. Conf. on High Nitrogen Steel, G. Stein and H. Witulski, eds., Verlag Stahleisen mbH, Dusseldorf, 1990, pp. 365–71.

  3. V.G. Gavriljuk: ISIJ Int., 1996, vol. 36, pp. 738–45.

    Article  CAS  Google Scholar 

  4. J.W. Simmons: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2579–95.

    Article  CAS  ADS  Google Scholar 

  5. D. Jandová, J. Řehoř, and Z. Nový: J. Mater. Process. Technol., 2004, vols. 157–158, pp. 523–30.

    Article  Google Scholar 

  6. W.T. Fu, Z. Wang, and W.C. Liu: Iron Steel, 1998, vol. 33, pp. 45–48 (in Chinese).

    CAS  Google Scholar 

  7. W.T. Fu, Y.Z. Zheng, and X.K. He: Wear, 2001, vol. 249, pp. 788–91.

    Article  CAS  Google Scholar 

  8. W.C. Liu, Y.Z. Zheng, and M.Z. Wang: Iron Steel, 1994, vol. 29 (7), pp. 55–57 (in Chinese).

    Google Scholar 

  9. G.Z. Cui, D.F. Gao, and J.Z. Cai: J. Plasticity Eng., 1996, vol. 3, pp. 3–6 (in Chinese).

    Google Scholar 

  10. C.Y. Wang, X.J. Wang, and H. Chang: Mater. Sci. Eng. A, 2007, vol. 464, pp. 52–58.

    Article  Google Scholar 

  11. S.S. Menon and H.J. Rack: Mater. Sci. Eng. A, 2001, vol. 297, pp. 244–55.

    Article  Google Scholar 

  12. N.K. Park, J.T. Yeom, and Y.S. Na: J. Mater. Process. Technol., 2002, vols. 130–131, pp. 540–45.

    Article  Google Scholar 

  13. Y.V.R.K. Prasad, S. Sasidhara, and V.K. Sikka: Intermetallics, 2000, vol. 8, pp. 987–95.

    Article  CAS  Google Scholar 

  14. S. Venugopal, P.V. Sivaprasad, and M. Vasudevan: J. Mater. Process. Technol., 1995, vol. 59, pp. 343–50.

    Article  Google Scholar 

  15. J.T. Liu, H.B. Chang, and R.H. Wu: Mater. Charact., 2000, vol. 45, pp. 175–86.

    Article  CAS  Google Scholar 

  16. C.M. Sellars: Yue Sed Proc. Int. Conf. on Mathematical Modelling of Hot Rolling of Steel, CIMM, Hamilton, ON, Canada, 1900, pp. 1–18.

  17. Y.H. Lu, R.D. Fu, and L. Qiu: Trans. Mater. Heat Treatment, 2007, vol. 28, pp. 69–72 (in Chinese).

    CAS  Google Scholar 

  18. S.F. Medina and C.A. Hernandez: Acta Mater., 1996, vol. 44, pp. 137–48.

    Article  CAS  Google Scholar 

  19. E.I. Poliak and J.J. Jonas: ISIJ Int., 2003, vol. 43, pp. 684–91.

    Article  CAS  Google Scholar 

  20. A. Najafizadeh and J.J. Jonas: ISIJ Int., 2006, vol. 46, pp. 1679–84.

    Article  CAS  Google Scholar 

  21. D. Ponge and G. Gottstein: Acta Mater., 1998, vol. 46, pp. 69–80.

    Article  CAS  Google Scholar 

  22. S.I. Kim and Y.C. Yoo: Mater. Sci. Eng. A, 2001, vol. 311, pp. 108–13.

    Article  Google Scholar 

  23. Y.V.R.K. Prasad and S. Sasidhara: Hot Working Guide: A Compendium of Processing Maps, ASM, Materials Park, OH, 1997, pp. 3–8.

    Google Scholar 

  24. M. Jafari and A. Najafizadeh: Mater. Sci. Eng. A, 2009, vol. 501, pp. 16–25.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Science and Technology Support Plan of China (Grant No. 2007BAF02B01-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wantang Fu.

Additional information

Manuscript submitted June 28, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Fu, W., Sun, S. et al. Mechanical Behavior and Microstructural Change of a High Nitrogen CrMn Austenitic Stainless Steel during Hot Deformation. Metall Mater Trans A 41, 1025–1032 (2010). https://doi.org/10.1007/s11661-009-0153-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0153-2

Keywords

Navigation