Skip to main content
Log in

Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A subregular solution thermodynamic model was used to calculate the stacking fault energies (SFEs) of high-manganese (10 to 35 wt pct) steels with carbon contents of 0 to 1.2 wt pct. Based on these calculations, composition-dependent diagrams were developed showing the regions of different SFE values for the mentioned composition range. These diagrams were called SFE maps. In addition, variations in the SFE maps were observed through increasing the temperature, aluminum content, and austenite grain size. These changes were seen either as an increasing trend of SFE caused by raising the temperature and aluminum content, or as a decreasing behavior caused by increasing the grain size. The SFE value of 20 mJ/m2 within these diagrams was introduced as the upper limit for the strain-induced martensite formation. The variations in this limit caused by increasing the temperature and aluminum content were mathematically evaluated to find out the minimum amount of manganese that was required to avoid the martensitic transformation. By introducing the isocarbon and isomanganese diagrams of the SFE, it was seen that both temperature and aluminum had a greater effect on the SFE when added to the steels with the lower manganese contents. Moreover, by adding more aluminum to the composition of the high-manganese steels, its influence on the SFE decreased continuously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. V.H. Schumann: Neue Hütte, 1972, vol. 17, pp. 605–09.

    CAS  Google Scholar 

  2. H. Schumann: J. Kristall Technik, 1974, vol. 10, pp. 1141–50.

    Article  Google Scholar 

  3. B.W. Oh, S.J. Cho, Y.G. Kim, Y.P. Kim, W.S. Kim, and S.H. Hong: Mater. Sci. Eng., A, 1995, vol. 197, pp. 147–56.

    Article  Google Scholar 

  4. O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391–1409.

    Article  MATH  Google Scholar 

  5. Y.K. Lee and C.S. Choi: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 355–60.

    Article  CAS  Google Scholar 

  6. S. Allain, J.-P. Chateau, and O. Bouaziz: Mater. Sci. Eng., A, 2004, vols. 387–389, pp. 143–47.

    Google Scholar 

  7. S. Allain, J.-P. Chateau, O. Bouaziz, S. Migot, and N. Guelton: Mater. Sci. Eng., A, 2004, vols. 387–389, pp. 158–62.

    Google Scholar 

  8. A.S. Hamada: Doctoral Thesis, University of Oulu, Linnanmaa, Finland, 2007.

  9. L. Bracke, J. Penning, and N. Akdut: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 520–28.

    Article  CAS  ADS  Google Scholar 

  10. O. Bouaziz, S. Allain, and C. Scott: Scripta Mater., 2008, vol. 58, pp. 484–87.

    Article  CAS  Google Scholar 

  11. O. Bouaziz and N. Guelton: Mater. Sci. Eng., A, 2001, vols. 319–321, pp. 246–49.

    Google Scholar 

  12. P.J. Brofman and G.S. Ansell: Metall. Trans. A, 1978, vol. 9A, pp. 879–80.

    CAS  ADS  Google Scholar 

  13. A. Dumay, J.-P. Chateau, S. Allain, S. Migot, and O. Bouaziz: Mater. Sci. Eng., A, 2008, vols. 483–484, pp. 184–87.

    Google Scholar 

  14. W.S. Yang and C.M. Wan: J. Mater. Sci., 1990, vol. 25, pp. 1821–23.

    Article  CAS  ADS  Google Scholar 

  15. L. Remy: Acta Metall., 1977, vol. 25, pp. 173–79.

    Article  CAS  Google Scholar 

  16. J. Wan, S. Chen, and Z. Xu: Sci. China, 2001, vol. 44 (4), pp. 345–52.

    Article  CAS  Google Scholar 

  17. J. Jun and C. Choi: Mater. Sci. Eng., A, 1998, vol. 257, pp. 353–56.

    Article  Google Scholar 

  18. S. Takaki, H. Nakatsu, and Y. Tokunaga: Mater. Trans. JIM, 1993, vol. 34, pp. 489–95.

    CAS  Google Scholar 

  19. P.Y. Volosevich, V.N. Grindnev, and Y.N. Petrov: Phys. Met. Metallogr., 1976, vol. 42, pp. 126–30.

    Google Scholar 

  20. Y. Tomota, M. Strum, and J.W. Morris, Jr.: Metall. Trans. A, 1987, vol. 18A, pp. 1073–81.

    CAS  Google Scholar 

  21. K. Ishida and T. Nishizawa: Trans. JIM, 1974, vol. 15, pp. 225–31.

    Google Scholar 

  22. G. Frommeyer, U. Brüx, and P. Neumann: ISIJ Int., 2003, vol. 43 (3), pp. 438–46.

    Article  CAS  Google Scholar 

  23. H. Ding, Z. Tang, W. Li, M. Wang, and D. Song: J. Iron Steel Res., 2006, vol. 13 (6), pp. 66–70.

    Article  CAS  Google Scholar 

  24. K. Sato, M. Ichinose, Y. Hirotsu, and Y. Inoue: ISIJ Int., 1989, vol. 29 (10), pp. 868–77.

    Article  CAS  Google Scholar 

  25. S. Vercammen: Doctoral Thesis, Katholieke Universiteit Leuven, Leuven, Belgium, 2004.

  26. C. Scott, S. Allain, M. Faral, and N. Guelton: Rev. Metall., 2006, vol. 103 (6), pp. 293–302.

    CAS  Google Scholar 

  27. L. Vitos, P.A. Korzhavyi, and B. Johansson: Phys. Rev. Lett., 2006, vol. 96, paper no. 117210, pp. 1–4.

  28. L. Vitos, J.-O. Nilsson, and B. Johansson: Acta Mater., 2006, vol. 54, pp. 3821–26.

    Article  CAS  Google Scholar 

  29. L. Vitos and B. Johansson: in Lecture Notes in Computer Science, vol. 4699, Springer, Berlin/Heidelberg, 2007, pp. 510–19.

  30. T. Hickel, A. Dick, B. Grabowski, F. Körmann, and J. Neugebauer: Steel Res. Int., 2009, vol. 80 (1), pp. 4–8.

    CAS  Google Scholar 

  31. C. Brandl, P.M. Derlet, and H. Van Swygenhoven: Phys. Rev. B, 2007, vol. 76, paper no. 054124, pp. 1–8.

  32. R.E. Schramm and R.P. Reed: Metall. Trans. A, 1975, vol. 6A, pp. 1345–51.

    CAS  ADS  Google Scholar 

  33. S. Vercammen, B.C. De Cooman, N. Akdut, B. Blanpain, and P. Wollants: Steel Res., 2003, vol. 74 (6), pp. 370–75.

    CAS  Google Scholar 

  34. O. Grässel, G. Frommeyer, C. Derder, and H. Hofmann: J. Phys. IV France, 1997, vol. 7, pp. 383–88.

    Article  Google Scholar 

  35. Y. Lee: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 1913–17.

    Article  CAS  Google Scholar 

  36. X. Tian and Y.S. Zang: Acta Metall. Sinica, 2003, vol. 16 (3), pp. 211–16.

    CAS  ADS  Google Scholar 

  37. P. Hohenberg and W. Kohn: Phys. Rev., 1964, vol. 136, pp. 864–71.

    Article  MathSciNet  ADS  Google Scholar 

  38. S. Kibey, J.B. Liu, M.J. Curtis, D.D. Johnson, and H. Sehitoglu: Acta Mater., 2006, vol. 54, pp. 2991–3001.

    Article  CAS  Google Scholar 

  39. D. Finkenstadt and D.D. Johnson: Phys. Rev. B, 2006, vol. 73, paper no. 024101, pp. 1–10.

  40. G. Lu, N. Kioussis, V.V. Bulatov, and E. Kaxsiras: Phys. Rev. B, 2000, vol. 62, pp. 3099–3108.

    Article  CAS  ADS  Google Scholar 

  41. C. Cheng, R.J. Needs, V. Heine, and N. Churcher: Europhys. Lett., 1987, vol. 3, pp. 475–79.

    Article  CAS  ADS  Google Scholar 

  42. A.P. Miodownik: Z. Metallkd., 1998, vol. 89, pp. 840–46.

    CAS  Google Scholar 

  43. S. Maggi and M. Murgia: Weld. Int., 2008, vol. 22 (9), pp. 610–18.

    Article  Google Scholar 

  44. P.H. Adler, G.B. Olsen, and W.S. Owen: Metall. Trans. A, 1986, vol. 17A, pp. 1725–37.

    Article  CAS  ADS  Google Scholar 

  45. D. Dew-Hughes and L. Kaufman: CALPHAD, 1979, vol. 3, pp. 175–203.

    Article  CAS  Google Scholar 

  46. J.F. Breedis and L. Kaufman: Metall. Trans., 1971, vol. 2, pp. 2359–71.

    Article  CAS  Google Scholar 

  47. L. Kaufman: CALPHAD, 1977, vol. 1, pp. 7–89.

    Article  Google Scholar 

  48. D. Saulov: CALPHAD, 2006, vol. 30, pp. 405–14.

    Article  CAS  Google Scholar 

  49. B. Lee: Metall. Trans. A, 1993, vol. 24A, pp. 1919–33.

    CAS  ADS  Google Scholar 

  50. A.T. Dinsdale: CALPHAD, 1991, vol. 15 (4), pp. 317–425.

    Article  CAS  Google Scholar 

  51. X.J. Jin and T.Y. Hsu: Mater. Chem. Phys., 1999, vol. 61, pp. 135–38.

    Article  CAS  Google Scholar 

  52. L. Li and T.Y. Hsu: CALPHAD, 1997, vol. 21 (3), pp. 443–48.

    Article  CAS  Google Scholar 

  53. R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura, and K. Kunishige: Scripta Mater., 2008, vol. 59, pp. 963–66.

    Article  CAS  Google Scholar 

  54. S.S. Babu, E.D. Specht, S.A. David, E. Karapetrova, P. Zschack, M. Peet, and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3281–89.

    Article  CAS  Google Scholar 

  55. C. Garcia de Andres, F.G. Caballero, C. Capdevila, and H.K.D.H. Bhadeshia: Scripta Mater., 2008, vol. 39 (6), pp. 791–96.

    Google Scholar 

  56. G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7A, pp. 1897–1904.

    CAS  ADS  Google Scholar 

  57. S.M. Cotes, A. Fernandez Guillermet, and M. Sade: Metall. Mater. Trans. A., 2004, vol. 35A, pp. 83–91.

    Article  CAS  ADS  Google Scholar 

  58. P.J. Ferreira and P. Müllner: Acta Mater., 1998, vol. 46 (13), pp. 4479–84.

    Article  CAS  Google Scholar 

  59. K. Ishida: Scripta Metall., 1977, vol. 11, pp. 237–42.

    Article  CAS  Google Scholar 

  60. B.K. Zuidema, D.K. Subramanyam, and W.C. Leslie: Metall. Trans. A, 1987, vol. 18A, pp. 1629–39.

    CAS  ADS  Google Scholar 

  61. A.S. Hamada, L.P. Karjalainen, M.C. Somani, and R.M. Ramadan: Mater. Sci. Forum, 2007, vol. 550, pp. 217–22.

    Article  CAS  Google Scholar 

  62. M.R. Barnett: Scripta Mater., 2008, vol. 59, pp. 696–98.

    Article  CAS  Google Scholar 

  63. H. Haddou, C. Gaudin, and X. Feaugas: J. Phys. IV France, 2001, vol. 11, pp. 283–91.

    Article  CAS  Google Scholar 

  64. P. Hedström: Doctoral Thesis, Lulea University of Technology, Lulea, Sweden, 2007.

  65. A.S. Hamada, L.P. Karjalainen, and M.C. Somani: Mater. Sci. Eng., A, 2007, vol. 467, pp. 114–24.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center (SFB) 761 “Steel–ab initio.” The assistance of H. Majedi, Department of Ferrous Metallurgy, RWTH Aachen University, for developing the required computer software, B. Hallstedt, Chair of Materials Chemistry, RWTH Aachen University, with the thermodynamics-based models, and A. Dick, Max-Planck-Institut für Eisenforschung (MPIE) (Düsseldorf, Germany), on the ab-initio techniques is deeply appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Saeed-Akbari.

Additional information

Manuscript submitted March 23, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saeed-Akbari, A., Imlau, J., Prahl, U. et al. Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels. Metall Mater Trans A 40, 3076–3090 (2009). https://doi.org/10.1007/s11661-009-0050-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-0050-8

Keywords

Navigation