Skip to main content
Log in

Microstructural and Dilatational Changes during Tempering and Tempering Kinetics in Martensitic Medium-Carbon Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructural and linear strain changes of martensitic medium-carbon steel were investigated during continuous heating to 600 °C at different rates using dilatometry and transmission electron microscopy (TEM). The precipitation of transition ε-carbides between 70 °C to 240 °C and the precipitation of cementite between 200 °C to 450 °C were observed depending on the heating rate. The measured strain changes during tempering stages 1 and 3 were converted to the fraction of tempered martensite based on the theoretical iron atomic volume change between martensite and tempered martensite. The presegregation amount of carbon before tempering was calculated to be about 0.16 wt pct by comparing the theoretical strain change with the measured strain change. Tempering kinetic models were developed using the tempered martensite fractions converted from the measured strain changes during tempering stages 1 and 3. The kinetics models exhibit a good correlation with the experimentally measured tempering kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The temperature ranges of each tempering stage are quoted from the article of Cheng et al.[17] They change depending on the carbon content and heating rate during tempering and are often overlapped between the various ranges.

  2. The magnitudes of volume changes by tempering are quoted from article of Cheng et al.[17] However, they change depending on the carbon content.

  3. K.A. Taylor et al. suggest that the structural similarity between the ε- and η-carbides will be recognized more clearly by calling the ordered ε′-carbide rather than η-carbide.[19]

References

  1. A.M. Sherman, G.T. Eldis, and M. Cohen: Metall. Trans. A, 1983, vol. 14A, pp. 995–1005.

    ADS  Google Scholar 

  2. P.C. Chen and P.G. Winchell: Metall. Trans. A, 1980, vol. 11A, pp. 1333–39.

    ADS  CAS  Google Scholar 

  3. P.C. Chen, B.O. Hall, and P.G. Winchell: Metall. Trans. A, 1980, vol. 11A, pp. 1323–31.

    ADS  CAS  Google Scholar 

  4. G.B. Olson and M. Cohen: Metall. Trans. A, 1983, vol. 14A, pp. 1057–65.

    ADS  Google Scholar 

  5. M.L. Bernshtein, L.M. Kaputkina, and S.D. Prokoshkin: Scripta Metall., 1984, vol. 18, pp. 863–68.

    Article  CAS  Google Scholar 

  6. H. Hayakawa, M. Tanigami, and M. Oka: Metall. Trans. A, 1985, vol. 16A, pp. 1745–50.

    ADS  CAS  Google Scholar 

  7. J.R. Genin, and P.A. Flinn: Trans. TMS-AIME, 1968, vol. 242, pp. 1419–30.

    CAS  Google Scholar 

  8. W.K. Choo and R. Kaplow: Acta Metall., 1973, vol. 21, pp. 725–32.

    Article  CAS  Google Scholar 

  9. N. DeCristofaro and R. Kaplow: Metall. Trans. A, 1977, vol. 8A, pp. 35–44.

    ADS  CAS  Google Scholar 

  10. N. DeCristofaro, R. Kaplow, and W.S. Owen: Metall. Trans. A, 1978, vol. 9A, pp. 821–25.

    ADS  CAS  Google Scholar 

  11. V.I. Izotov and L. M. Utevskiy: Phys. Met. Metallogr., 1968, vol. 25, pp. 86–96.

    Google Scholar 

  12. S. Nagakura, Y. Hirotsu, M. Kusunoki, T. Suzuki, and Y. Nakamura: Metall. Trans. A, 1983, vol. 14A, pp. 1025–31.

    ADS  Google Scholar 

  13. M. Kusunoki and S. Nagakura: J. Appl. Cryst., 1981, vol. 14, pp. 329–36.

    Article  CAS  Google Scholar 

  14. M.K. Miller, P.A. Beaven, and G.D.W. Smith: Metall. Trans. A, 1981, vol. 12A, pp. 1197–1204.

    ADS  Google Scholar 

  15. M.K. Miller, P.A. Beaven, S.S. Brenner, and G.D.W. Smith: Metall. Trans. A, 1983, vol. 14A, pp. 1021–24.

    ADS  Google Scholar 

  16. G.R. Speich and W.C. Leslie: Metall. Trans., 1972, vol. 3, pp. 1043–54.

    Article  CAS  Google Scholar 

  17. L. Cheng, C.M. Brakman, B.M. Korevaar, and E.J. Mittemeijer: Metall. Trans. A, 1988, vol. 19A, pp. 2415–26.

    ADS  CAS  Google Scholar 

  18. G.R. Speich: Trans. TMS-AIME, 1969, vol. 245, pp. 2553–64.

    CAS  Google Scholar 

  19. K.A. Taylor, G.B. Olson, M. Cohen, and J.B. Van der Sande: Metall. Trans. A, 1989, vol. 20A, pp. 2749–65.

    ADS  CAS  Google Scholar 

  20. F.G. Caballero, C. García-Mateo, and C. García de Andrés: Mater. Trans., 2005, vol. 46, pp. 581–86.

    Article  CAS  Google Scholar 

  21. Y. Wang, S. Denis, B. Appolaire, and P. Archambault: J. Phys. VI Fr., 2004, vol. 120, pp. 103–10.

    CAS  Google Scholar 

  22. E.J. Mittemeijer, L. Cheng, P.J. van der Schaaf, C.M. Brakman, and B.M. Korevaar: Metall. Trans. A, 1988, vol. 19A, pp. 925–32.

    ADS  CAS  Google Scholar 

  23. M. Mångård and S. Larsson: M.Sc. Thesis, LiTH-IKP-Ex 1234, Linkoping University, 1995.

  24. S.J. Lee, M.T. Lusk, and Y.K. Lee: Acta Mater., 2007, vol. 55, pp. 875–82.

    Article  CAS  Google Scholar 

  25. M. Jung, S.J. Lee, and Y.K. Lee: Solid State Phenom., 2006, vol. 118, pp. 375–80.

    Article  CAS  Google Scholar 

  26. C. Zener: Trans. AIME, 1946, vol. 167, pp. 550–95.

    Google Scholar 

  27. M. Hillert: Jernkont. Ann., 1957, vol. 141, pp. 757–89.

    CAS  Google Scholar 

  28. M. van Rooyen and E.J. Mittemeijer: Scripta Metall., 1982, vol. 16, pp. 1255–60.

    Article  Google Scholar 

  29. L.J.E. Hofer, E.M. Cohen, and W.C. Peebles: J. Am. Chem. Soc., 1949, vol. 71, pp. 189–95.

    Article  CAS  Google Scholar 

  30. Yu. A. Bagaryatskii: Dokl. Akad. Nauk SSSR, 1950, vol. 73, pp. 1161–64.

    CAS  Google Scholar 

  31. B.G. Lifshitz: Physical Properties of Metals and Alloys, Mashgiz, Moscow, 1956, p. 257.

    Google Scholar 

  32. H. Lipson and N.J. Petch: JISI, 1940, vol. 142, pp. 95–103.

    Google Scholar 

  33. W.C. Leslie, R.M. Fisher, and N. Sen: Acta Metall., 1959, vol. 7, pp. 632–44.

    Article  CAS  Google Scholar 

  34. K.H. Jack: JISI, 1951, vol. 69, pp. 26–36.

    Google Scholar 

  35. S. Nagakura: J. Phys. Soc. Jpn., 1959, vol. 14, pp. 186–95.

    Article  ADS  CAS  Google Scholar 

  36. P.G. Winchell and M. Cohen: Trans. ASM, 1962, vol. 55, pp. 347–61.

    CAS  Google Scholar 

  37. R.C. Ruhl and M. Cohen: Trans. AIME, 1969, vol. 245, pp. 241–51.

    CAS  Google Scholar 

  38. Powder Diffraction File, ASTM card 6-0688, ASTM, Philadelphia, PA.

  39. K.W. Andrews: JISI, 1965, vol. 203, pp. 721–27.

    CAS  Google Scholar 

  40. F.G. Caballero, M.K. Miller, S.S. Babu, and C. García-Mateo: Acta Mater., 2007, vol. 55, pp. 381–90.

    Article  CAS  Google Scholar 

  41. M. Cohen: Trans. JIM, 1970, vol. 11, pp. 145–51.

    CAS  Google Scholar 

  42. F. S. Buffington, K. Hirano, and M. Cohen: Acta Metall., 1961, vol. 9, pp. 434–39.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Core Research Center (NCRC) program from MOST and KOSEF (Grant No. R15-2006-022-01002-0) and by the Components and Materials Technology Development program from MOCIE. The authors are thankful to Professor C.J. Van Tyne, Colorado School of Mines, for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Kook Lee.

Additional information

Manuscript submitted December 27, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, M., Lee, SJ. & Lee, YK. Microstructural and Dilatational Changes during Tempering and Tempering Kinetics in Martensitic Medium-Carbon Steel. Metall Mater Trans A 40, 551–559 (2009). https://doi.org/10.1007/s11661-008-9756-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9756-2

Keywords

Navigation