Skip to main content
Log in

Low-Temperature Coarsening and Plastic Flow Behavior of an Alpha/Beta Titanium Billet Material with an Ultrafine Microstructure

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

An Erratum to this article was published on 07 October 2008

Abstract

The influence of microstructure evolution on the low-temperature superplasticity of ultrafine alpha/beta titanium alloys was established. For this purpose, the static and dynamic coarsening response and plastic flow behavior of Ti-6Al-4V with a submicrocrystalline microstructure were determined via a series of heat treatments and uniaxaial compression tests at temperatures of 650 °C, 775 °C, and 815 °C. At all test temperatures, static coarsening exhibited diffusion-controlled (r vs time) kinetics and followed a dependence on phase composition and volume fraction qualitatively similar to previous observations at 850 °C to 950 °C. Dynamic coarsening at 775 °C and 815 °C and strain rates of 10−4 and 10−3 s−1 were similar to prior higher-temperature observations as well in that the kinetics were approximately one order of magnitude faster than the corresponding static behaviors. The increase in coarsening rate with superimposed deformation was attributed to the enhancement of diffusion by dislocations generated in the softer beta phase. With respect to deformation response, plastic flow was superplastic with m values of ∼0.6 at 650 °C, 775 °C, and 815 °C and strain rates of 10−4 and 10−3 s−1. Dynamic coarsening resulted in flow hardening at both temperatures and strain rates for a short preheat time (15 minutes) but was noticeably reduced when a longer preheat time (1 hour) was used prior to testing at 10−3 s−1. The latter behavior was largely attributed to noticeable static coarsening during preheating. A generalized constitutive relation based on a single stress exponent and the instantaneous alpha particle size was shown to describe the superplastic flow of ultrafine Ti-6Al-4V at low and high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Compressive strains, strain rates, and stresses are reported as positive quantities here and throughout the balance of this article.

  2. A term comprising the volume fraction of beta was not included in Eq. [2] as in Ref. 22, because it was hypothesized that the deformation of beta, which accommodates gbs, is local in nature and analogous to mantle deformation in the description of superplasticity of single-phase alloys formulated by Gifkins.[15]

References

  1. Y.T. Zhu, T.G. Langdon, R.Z. Valiev, S.L. Semiatin, D.H. Shin, T.C. Lowe: Ultrafine Grained Materials III, TMS, Warrendale, PA, 2004

    Google Scholar 

  2. Ultrafine Grained Materials IV, Y.T. Zhu, T.G. Langdon, Z. Horita, M.J. Zehetbauer, S.L. Semiatin, and T.C. Lowe, eds., TMS, Warrendale, PA, 2006

  3. Proc. 2nd Int. Conf. on Nanomaterials by Severe Plastic Deformation: Fundamentals-Processing-Applications, M.J. Zehetbauer and R.Z. Valiev, eds., Wiley-VCH, Weinheim, Germany, 2004

  4. E. Ma: JOM, 2006, vol. 58 (4), pp. 49–53

    Article  CAS  Google Scholar 

  5. P. Comley: Mater. Sci. Forum, 2004, vols. 447–448, pp. 233–38

    Article  Google Scholar 

  6. P. Comley: J. Mater. Eng. Perform., 2004, vol. 13, pp. 660–64

    Article  CAS  Google Scholar 

  7. H. Inagaki: Z. Metallkd., 1995, vol. 86, pp. 643–50

    CAS  Google Scholar 

  8. S.V. Zherebstov, G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, and S.L. Semiatin: Proc. 2nd Int. Conf. on Nanomaterials by Severe Plastic Deformation: Fundamentals-Processing-Applications, M.J. Zehetbauer and R.Z. Valiev, eds., Wiley-VCH, Weinheim, Germany, 2004, pp. 835–40

  9. G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, R.V. Safiullin, R.Y. Lutfullin, O.N. Senkov, F.H. Froes, O.A. Kaibyshcv: J. Mater. Process. Technol., 2001, vol. 116, pp. 265–68

    Article  CAS  Google Scholar 

  10. Y.G. Ko, C.S. Lee, D.H. Shin, S.L. Semiatin: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 381–91

    Article  CAS  Google Scholar 

  11. A.K. Ghosh: University of Michigan, Ann Arbor, MI, unpublished research, 2006

  12. A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, A.K. Mukherjee: Mater. Sci. Eng. A, 2002, vol. A323, pp. 318–25

    CAS  Google Scholar 

  13. A.K. Ghosh, C.H. Hamilton: Metall. Trans. A, 1979, vol. 10A, pp. 699–706

    CAS  Google Scholar 

  14. S.L. Semiatin, M.W. Corbett, P.N. Fagin, G.A. Salishchev, C.S. Lee: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1125–36

    Article  CAS  Google Scholar 

  15. R.C. Gifkins: Metall. Trans. A, 1976, vol. 7A, pp. 1225–32

    CAS  Google Scholar 

  16. A.K. Ghosh: in Metalworking: Bulk Forming, vol. 14A, ASM Handbook, 10th ed., S.L. Semiatin, ed., ASM INTERNATIONAL, Materials Park, OH, 2005, pp. 563–86

  17. J.E. Bird, A.K. Mukherjee, J.E. Dorn: in Quantitative Relation between Microstructure and Properties, D.G. Brandon, A. Rosen, eds., Israel Universities Press, Jerusalem, Israel, 1969, pp. 255–342

    Google Scholar 

  18. T.G. Langdon: J. Mater. Sci., 2006, vol. 41, pp. 597–609

    Article  CAS  Google Scholar 

  19. M.L. Meier, D.R. Lesuer, A.K. Mukherjee: Mater. Sci. Eng. A, 1991, vol. A136, pp. 71–78

    CAS  Google Scholar 

  20. A. Arieli, A. Rosen: Metall. Trans. A, 1977, vol. 8A, pp. 1591–96

    CAS  Google Scholar 

  21. J.A. Wert, N.E. Paton: Metall. Trans. A, 1983, vol. 14A, pp. 2535–44

    CAS  Google Scholar 

  22. M. Tufts, C. Hammond: Mater. Sci. Technol., 1999, vol. 15, pp. 1154–66

    Google Scholar 

  23. S.L. Semiatin, B.C. Kirby, G.A. Salishchev: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2809–19

    Article  CAS  Google Scholar 

  24. G.A. Sargent and S.L. Semiatin: Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, unpublished research, 2006.

  25. J.W. Martin, R.D. Doherty, B. Cantor: Stability of Microstructure in Metallic Systems, Cambridge University Press, Cambridge, United Kingdom, 1997

    Google Scholar 

  26. O.N. Senkov, M.M. Myshlyaev: Acta Metall., 1986, vol. 34, pp. 97–106

    Article  CAS  Google Scholar 

  27. S.L. Semiatin, T.M. Brown, T.A. Goff, P.N. Fagin, D.R. Barker, R.E. Turner, J.M. Murry, J.D. Miller, F. Zhang: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3015–18

    Article  CAS  Google Scholar 

  28. S.L. Semiatin, S.L. Knisley, P.N. Fagin, F. Zhang, D.R. Barker: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2377–86

    Article  CAS  Google Scholar 

  29. P.W. Voorhees, M.E. Glicksman: Acta Metall., 1984, vol. 32, pp. 2013–30

    Article  CAS  Google Scholar 

  30. A.D. Brailsford, P. Wynblatt: Acta Metall., 1979, vol. 27, pp. 489–97

    Article  CAS  Google Scholar 

  31. R.L. Goetz, S.L. Semiatin: J. Mater. Eng. Perform., 2001, vol. 10, pp. 710–17

    Article  CAS  Google Scholar 

  32. J.D. Miller, G.A. Sargent, and S.L. Semiatin: Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, unpublished research, 2006

  33. G. Schroder, T.W. Duerig: in Titanium: Science and Technology, G. Lutjering, U. Zwicker, W. Bunk, eds., Deutsche Gesellschaft fur Metallkunde e.V., Oberursel, Germany, 1985, pp. 585–92

    Google Scholar 

  34. S.L. Semiatin, F. Montheillet, G. Shen, J.J. Jonas: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2719–27

    Article  CAS  Google Scholar 

  35. P. Vo, M. Jahazi, S. Yue, P. Bocher: Mater. Sci. Eng. A, 2007, vol. A447, pp. 99–110

    CAS  Google Scholar 

  36. H. Ogi, S. Kai, H. Ledbetter, R. Tarumi, M. Hirao, K. Takashima: Acta Mater., 2004, vol. 52, pp. 2075–80

    Article  CAS  Google Scholar 

  37. S.M Goodrich: University of Dayton Research Institute, Dayton, OH, unpublished research, 2006.

  38. J.F. Murdock, T.S. Lundy, E.E. Standsbury: Acta Metall., 1964, vol. 12, pp. 1033–39

    Article  Google Scholar 

  39. J.F. Murdock, C.J. McHargue: Acta Metall., 1968, vol. 16, pp. 493–500

    Article  CAS  Google Scholar 

  40. N.E.W. De Reca, C.M. Libanati: Acta Metall., 1968, vol 16, 1297–1305

    Article  Google Scholar 

  41. T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, Y.V.R.K. Prasad: Mater. Sci. Eng. A, 2000, vol. A284, pp. 184–94

    CAS  Google Scholar 

  42. J.H. Kim, S.L. Semiatin, C.S. Lee: Mater. Sci. Eng. A, 2005, vol. A394, pp. 366–75

    CAS  Google Scholar 

Download references

Acknowledgments

This work was conducted as part of the in-house research of the Metals Processing Group of the Air Force Research Laboratory’s Materials and Manufacturing Directorate. The support and encouragement of the laboratory management and the Air Force Office of Scientific Research (Dr. B. Conner, program manager) are gratefully acknowledged. One of the authors (GAS) thanks the University of Dayton for granting a period of sabbatical leave during which this work was done. Technical discussions with Professor G.A. Salishchev (Institute for Metals Superplasticity Problems, Ufa, Russia), who also supplied the material; Professor C.S. Lee (Pohang University of Science and Technology, Pohang, Korea); and Dr. Oleg Senkov (UES, Inc., Dayton, OH) are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.A. Sargent.

Additional information

Manuscript submitted April 16, 2008.

An erratum to this article can be found at http://dx.doi.org/10.1007/s11661-008-9695-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sargent, G., Zane, A., Fagin, P. et al. Low-Temperature Coarsening and Plastic Flow Behavior of an Alpha/Beta Titanium Billet Material with an Ultrafine Microstructure. Metall Mater Trans A 39, 2949–2964 (2008). https://doi.org/10.1007/s11661-008-9650-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9650-y

Keywords

Navigation