Skip to main content
Log in

Heat-Transfer Coefficient and In-Cavity Pressure at the Casting-Die Interface during High-Pressure Die Casting of the Magnesium Alloy AZ91D

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present article deals with the application of a new measurement method to determine the heat-transfer coefficient (HTC) and the heat flux density at the casting-die interface during high-pressure die casting (HPDC) and solidification of the magnesium AZ91D alloy. The main measurements during the trial included velocity and the position of the piston that delivers the metal into the die, the pressure in the die cavity and at the tip of the piston, the alloy surface temperature, and the die temperature at different depths from the surface of the die. The temperature data were analyzed using an inverse method to determine the HTC at the casting-die interface during solidification. This article examines in detail the influence of the piston velocity and in-cavity pressure on heat transfer at the casting-die interface during casting and solidification of the magnesium AZ91D alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. The alloy surface temperature and the temperatures in the die at 20 mm from the surface are not shown in Figure 7 in order to simplify the figure and enable the different curves to be distinguished. They remain exactly as their measured values, as shown in Figure 5 and they are not involved in the inverse calculation.

Abbreviations

a :

thermal diffusivity (ms−1)

h, h max :

heat-transfer coefficient (W m−2 K−1)

q, q max :

heat flux density and its peak value (Wm−2)

ntf:

number of future instant (used in our inverse method) (—)

T :

temperature (°C)

T sd , T sc :

temperature of the surface of the die and of the casting (°C)

dz :

inaccuracy in location of the thermocouple (m)

λ :

thermal conductivity (W m−1 K−1)

ΔT :

temperature difference at the casting-die interface (°C)

\( \tau ^{ + }_{{TC}} \) :

normalized time response of the thermocouples (—)

τ :

duration of the heat input at the surface of the die (s)

τ TC :

time response of a thermocouple (s)

References

  1. K.U. Kainer: Magnesium Alloys and Their Applications, Wiley-VCH, Weinheim, Germany, 2000

    Google Scholar 

  2. M. Prates, H. Biloni: Metall. Trans., 1972, vol. 3, pp. 1501–10

    Article  CAS  Google Scholar 

  3. A. Hamasaiid, G. Dour, M. Dargusch, T. Loulou, C. Davidson, and G. Savage: in Modeling of Casting, Welding, and Advanced Solidification XI, TMS, Warrendale, PA, Opio, France, 2006, pp. 1213–16

  4. S. Gulizia, M.Z. Jahedi, E.D. Doyle: Surf. Coat. Technol., 2001, vol. 140 (3), pp. 200–05

    Article  CAS  Google Scholar 

  5. G. Dour, M. Dargusch, C. Davidson, A. Nef: J. Mater. Process. Technol., 2005, vol. 169 (2), pp. 223–33

    Article  CAS  Google Scholar 

  6. V. Davies: Br. Foundryman, 1980, vol. 73 (12), pp. 331–34

    Google Scholar 

  7. K. Ho, R.D. Pehlke: AFS Trans., 1983, vol. 91 pp. 689–98

    Google Scholar 

  8. K. Ho, R.D. Pehlke: Metall. Mater. Trans. B, 1985, vol. 16B pp. 585–94

    CAS  Google Scholar 

  9. T.S.P. Kumar, K.N. Prabhu: Metall. Mater. Trans. B, 1991, vol. 22B, pp. 717–27

    CAS  Google Scholar 

  10. P. Schmidt: Ph.D. Thesis, Royal Institute of Technology, Stockholm, 1994

  11. F. Michel, P.R. Louchez, F.H. Samuel: AFS Trans., 1995, vol. 103 pp. 275–83

    CAS  Google Scholar 

  12. W.D. Griffiths: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 473–82

    Article  CAS  Google Scholar 

  13. S. Broucaret, A. Michrafy, G. Dour: J. Mater. Process Technol., 2001, vol. 110, pp. 211–17

    Article  CAS  Google Scholar 

  14. C.P. Hallam, W.D. Griffiths: Metall. Mater. Trans. B, 2004, vol. 35B pp. 721–33

    Article  CAS  Google Scholar 

  15. C.W. Nelson: 6th SDCE Int. Die Casting Congr., Cleveland, OH, 1970, paper no. 63

  16. C.W. Nelson: Giesserei-Praxis, 1972, vol. 19, pp. 341–49

    Google Scholar 

  17. S. Bounds, K. Davey, S. Hinduja: J. Manuf. Sci. E.-Trans. ASME, 2000, vol. 122, pp. 90–99

    Article  Google Scholar 

  18. S. Hong, D.G. Backman, R. Mehrabian: Metall. Trans. B, 1979, vol. 10B pp. 299–301

    Article  Google Scholar 

  19. J.V. Beck: Nucl. Eng. Des., 1968, vol. 7 pp. 170–78

    Article  Google Scholar 

  20. T.D. Fadale, A.V. Nenarokomov, A.F. Emery: Int. J. Heat Mass Transfer, 1995, vol. 38 (3), pp. 511–18

    Article  CAS  Google Scholar 

  21. J.R. Shenefelt, R. Luck, R.P. Taylor, J.T. Berry: Int. J. Heat Mass Transfer, 2002, vol. 45 (1), pp. 67–74

    Article  Google Scholar 

  22. B. Bourouga, V. Goizet, J.-P. Bardon: Int. J. Therm. Sci., 2000, vol. 39 (1), pp. 96–109

    Article  Google Scholar 

  23. T.D. Fadale, A.V. Nenarokomov, A.F. Emery: J. Heat Transfer, 1995, vol. 117 pp. 373–79

    Article  Google Scholar 

  24. G. Dour, M. Dargusch, C. Davidson: Int. J. Heat Mass Transfer, 2006, vol. 49 (11–12), pp. 1773–89

    Article  CAS  Google Scholar 

  25. Quartz Cavity Pressure Sensor (Aluminium), 6175a2, Kistler Instrument Corporation, Armhest, NY, Available at: http://www.intertechnology.com/Kistler/pdfs/Pressure_Model_6175A2.pdf

  26. M.S. Dargusch, G. Wang, N. Schauer, C.M. Dinnis, G. Savage: Int. J. Cast Met. Res., 2005, vol. 18 (1), pp. 47–54

    Article  Google Scholar 

  27. M.S. Dargusch, G. Dour, N. Schauer, C.M. Dinnis, G. Savage: J. Mater. Process. Technol., 2006, vol. 180 (1–3), pp. 37–43

    Article  CAS  Google Scholar 

  28. K. Rogers and G. Savage: in North American Die Casting Association Congr., Cincinnati, OH, 2001, pp. T01–T92

  29. The Temperature Handbook, Omega Ltd., 2002, Available at: http://www.omega.fr/pdf/temperature/Z/zsection.asp

  30. Thermocoax: Quel Thermocouple Choisir?, Lyon, France, 2002, pp. 2–31

  31. F. Medjedoub: PhD Thesis, École des Mines d’Albi-Carmaux, Albi, France, 2004

  32. A. Hamasaiid, M.S. Dargusch, C. Davidson, R.S. Tovar, T. Loulou, F. Rezaï-Aria, G. Dour: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1303–16

    Article  CAS  Google Scholar 

  33. G. Savage, M. Gershenzon, and K.J. Rogers: in North American Die Casting Association Congress, Cincinnati, OH, 2001, pp. T01–53

  34. R. Helenius, O. Lohne, L. Arnberg, H.I. Laukli: Mater. Sci. Eng., A, 2005, vol. 413–414 pp. 52–55

    Google Scholar 

  35. A. Hamasaiid: Ph.D. Thesis, Université Paul Sabatier (France) and University of Queensland (Australia), Brisbane, Albi, 2007

Download references

Acknowledgments

The authors acknowledge the financial support of the CAST Cooperative Research Centre (CRC), Ferra Engineering, and the Ford Motor Company. The University of Queensland and CSIRO are core participants in the CAST CRC. This research is a collaboration between CAST and the Ecole des Mines d’Albi-Carmaux. The authors also thank Mr. Andy Yob and Ms. Maya Gershenzon for their assistance in performing the trial at the CSIRO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hamasaiid.

Additional information

Manuscript submitted April 3, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamasaiid, A., Dour, G., Dargusch, M. et al. Heat-Transfer Coefficient and In-Cavity Pressure at the Casting-Die Interface during High-Pressure Die Casting of the Magnesium Alloy AZ91D. Metall Mater Trans A 39, 853–864 (2008). https://doi.org/10.1007/s11661-007-9452-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9452-7

Keywords

Navigation