Skip to main content
Log in

Transmission Electron Microscopy Study of Strain-Induced Low- and High-Angle Boundary Development in Equal-Channel Angular-Pressed Commercially Pure Aluminum

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The evolution of the microstructure in a commercially pure aluminum during equal channel angular pressing (ECAP) using route BC was investigated by transmission electron microscopy. Subgrains, or cells, form, which have both high (ϕ > 15 deg) and low (ϕ < 15 deg) misorientation. Misorientations and spacings of cell boundaries were determined from about 250 boundaries per pass of ECAP cell boundaries on the basis of Kikuchi patterns and Moiré fringes. The average cell size and misorientation saturate within the first two passes. Misorientations and spacings of high-angle boundaries decrease with the number of passes. After eight passes, the cell size is ≈1.3 μm and the fraction of high-angle boundaries is ≈0.7. The marked differences in the rate of grain structure evolution per pass are linked to differences in the ability of dislocations introduced in new passes to recombine with the existing ones. With increasing ECAP strain, the distribution of misorientations develops strong deviations from the MacKenzie distribution for statistical grain orientation. This is interpreted as a result of the tendency to form equiaxed grains in a textured grain structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

  2. The sign of the Burgers vector changes with the sign of the dislocation line direction. As opposite sides of a dislocation loop have opposite line directions, the Burgers vectors are opposite on opposite sides of the loop if the line directions are chosen to be the same. This means that Burgers vectors of opposite sign are generated at equal amounts. In 50 pct of the encounters of dislocations with the favored Burgers vector of passes 1 and 2, an energetically favorable recombination to a dislocation with Burgers vector of type \( {\left\langle {110} \right\rangle } \) is possible.

References

  1. V.M. Segal, V.I. Reznikov, A.E. Drobyshevskiy, V.I. Kopylov: Russ. Metall., 1981, vol. 1, pp. 99–104

    Google Scholar 

  2. Y.T. Zhu, T.C. Lowe: Mater. Sci. Eng. A, 2000, vol. 291, pp. 46–53

    Article  Google Scholar 

  3. V.M. Segal: Mater. Sci. Eng. A, 1995, vol. 197, pp. 157–64

    Article  Google Scholar 

  4. Y. Iwahashi, M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2245–52

    Article  CAS  Google Scholar 

  5. M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, T.G. Langdon: Acta Mater., 1996, vol. 44, pp. 4619–29

    Article  CAS  Google Scholar 

  6. P.L. Sun, P.W. Kao, C.P. Chang: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1359–68

    Article  CAS  Google Scholar 

  7. P.L. Sun, P.W. Kao, C.P. Chang: Scripta Mater., 2004, vol. 51, pp. 565–70

    Article  CAS  Google Scholar 

  8. S.V. Raj, G. Pharr: Mater. Sci. Eng., 1986, vol. 81, pp. 217–37

    Article  CAS  Google Scholar 

  9. H.J. Frost, M.F. Ashby: Deformation-Mechanism Maps, Pergamon Press, Oxford, United Kingdom, 1982

    Google Scholar 

  10. A. Godfrey, D.A. Hughes: Acta Mater., 2000, vol. 48 (8), pp. 1897–1905

    Article  CAS  Google Scholar 

  11. H.J. McQueen, E. Evangelista, M. Cabibbo, and G. Avramovic-Cingara: unpublished research

  12. S.C. Baik, Y. Estrin, H.S. Kim, R.J. Hellmig: Mater. Sci. Eng. A, 2003, vol. 351, pp. 86–97

    Article  CAS  Google Scholar 

  13. P.B. Prangnell and J.R. Bowen: Ultrafine Grained Materials II, Seattle, WA, Feb. 2002, Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran, and T.C. Lowe, eds., TMS, Warrendale, PA, 2002, pp. 89–97

  14. J.A. Wert, Q. Liu, N. Hansen: Acta Mater., 1997, vol. 45, pp. 2565–76

    Article  CAS  Google Scholar 

  15. D.A. Hughes: Mater. Sci. Eng. A, 2001, vol. 319, pp. 46–54

    Article  Google Scholar 

  16. Q. Liu, X. Huang, D.J. Lloyd, N. Hansen: Acta Mater., 2002, vol. 50 (15), pp. 3789–3802

    Article  CAS  Google Scholar 

  17. P.J. Hurley, P.S. Bate, F.J. Humphreys: Acta Mater., 2003, vol. 51, pp. 4737–50

    Article  CAS  Google Scholar 

  18. H. Weiland: Acta Mater., 1992, vol. 40, pp. 1083–89

    Article  CAS  Google Scholar 

  19. D. Kuhlmann-Wilsdorf: Scripta Metall. Mater., 1996, vol. 34, pp. 641–50

    CAS  Google Scholar 

  20. M. Cabibbo, E. Evangelista, V. Latini, E. Nes, S. Tangen: Mater. Sci. Forum, 2003, vols. 423–432, pp. 2673–78

    Article  Google Scholar 

  21. M. Cabibbo, E. Evangelista, C. Scalabroni: Lamiera, 2005, vol. 6, pp. 50–57

    Google Scholar 

  22. M. Cabibbo, E. Evangelista, V. Latini: J. Mater Sci., 2004, vol. 39, pp. 5659–67

    Article  CAS  Google Scholar 

  23. Y. Iwahashi, J.T. Wang, Z. Horita, M. Nemoto, T.G. Langdon: Scripta Mater., 1996, vol. 35 (2), pp. 143–46

    Article  CAS  Google Scholar 

  24. M. Cabibbo, E. Evangelista, C. Scalabroni: Micron, 2005, vol. 36, pp. 401–14

    Article  CAS  Google Scholar 

  25. Q. Liu, H. Xiaooxu, Y. Mei: Ultramicroscopy, 1992, vol. 41, pp. 317–21

    Article  Google Scholar 

  26. D.B. Williams, C.B. Carter: Transmission Electron Microscopy–Diffraction, Plenum Press, New York, NY, 1996

    Google Scholar 

  27. Y. Iwahashi, Z. Horita, M. Nemoto, T. Langdon: Acta Mater., 1998, vol. 46 (9), pp. 3317–31

    Article  CAS  Google Scholar 

  28. H.W. Höppel, J. May, P. Eisenlohr, M. Göken: Z. Metallkd., 2005, vol. 96 (6), pp. 566–71

    Google Scholar 

  29. P.B. Berbon, N.K. Tsenev, R.Z. Valiev, M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2237–43

    Article  CAS  Google Scholar 

  30. Z. Horita, T. Fujinami, M. Nemoto, T.G. Langdon: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 691–701

    Article  CAS  Google Scholar 

  31. J.Y. Chang, J.S. Yoon, G.H. Kim: Scripta Mater., 2001, vol. 45, pp. 347–54

    Article  CAS  Google Scholar 

  32. S.D. Terhune, D.L. Swisher, K. Oh-Ishi, Z. Horita, T.G. Langdon, T.R. McNelley: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2173–84

    Article  CAS  Google Scholar 

  33. X. Molodova, G. Gottstein, M. Winning, and R.J. Hellmig: Mater. Sci. Eng. A, 2007, vol. 460–463, pp. 204–13

    Google Scholar 

  34. M. Cabibbo and E. Evangelista: Conf. Proc. ICAA-9, Brisbane, Australia, 2004, IMEA, Brisbane, 2004, pp. 190–95

Download references

Acknowledgments

The support from NSF European Collaborative Grant No. DMR-041222 and INFM PAIS-UFIGRAL 6001 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cabibbo.

Additional information

Manuscript submitted...

Appendix

Appendix

The area per volume of (low-angle and high-angle) cell boundaries is k λ /λ. Analogously, the area per volume of high-angle boundaries is k d /d. The numerical factors k λ and k d depend on (sub-) grain shape. For instance, they equal 2 for equiaxed grains and 1 for parallel, plane boundaries and the test line perpendicular to the boundaries. The area fraction of high-angle boundaries results in f HAB = (k d /d)/(k λ /λ). Assuming that the deviations from equiaxiality are the same for cells and grains and that the cell intercepts are approximately perpendicular to the direction of grain elongation, k λ  = k d holds. Then, f HAB = λ/d is the fraction of high-angle boundaries.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabibbo, M., Blum, W., Evangelista, E. et al. Transmission Electron Microscopy Study of Strain-Induced Low- and High-Angle Boundary Development in Equal-Channel Angular-Pressed Commercially Pure Aluminum. Metall Mater Trans A 39, 181–189 (2008). https://doi.org/10.1007/s11661-007-9350-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9350-z

Keywords

Navigation