Skip to main content
Log in

Development of a heterogeneous microstructurally based finite element model for the prediction of forming limit diagram for sheet material

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A heterogeneous finite element model with randomly distributed inhomogeneities has been developed for the determination of the forming limit diagram (FLD) for thin aluminum sheet material based on the prediction of localized necking. The strength difference between the inhomogeneities and the matrix is ascertained either from the fluctuation of the experimental stress-strain curve or from a micromechanical analysis that uses a representative particle field. By changing the specimen geometry and friction conditions, different stress states (or strain paths) are achieved. A plot of the critical Oyane fracture parameter is used to identify the limit strain state. Also, a plot of equivalent plastic strain rate is used to distinguish the boundary of intense shear bands and hence to identify where to take the measurement point. Both a plane stress model and a three-dimensional (3-D) model are adopted to predict the shear banding phenomenon and hence the FLD. The predicted FLD agrees well with the measurements from a recent round robin experimental FLD involving several independent research laboratories. The Taguchi method is applied to assess how the various parameters involved in the heterogeneous model affect the calculated forming limit strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Narasimhan and R.H. Wagoner: Metall. Trans. A, 1991, vol. 22, pp. 2655–65.

    Google Scholar 

  2. M. Jain, D.J. Lloyd, and S.R. MacEwen: Int. J. Mech. Sci., 1996, vol. 38, pp. 219–32.

    Article  Google Scholar 

  3. P.D. Wu, K.W. Ncale, and E. Van der Giessen: Proc. R. Soc. London, Ser. A: Math., Phys. Eng. Sci., 1997, vol. 453, pp. 1831–48.

    Article  CAS  Google Scholar 

  4. H.P. Gänser, E.A. Werner, and F.D. Fischer: Int. J. Mech. Sci. 2000, vol. 42, pp. 2041–54.

    Article  Google Scholar 

  5. P.D. Wu, S.R. MacEwen, D.J. Lloyd, and K.W. Neale: Modell. Simul. Mater. Sci. Eng., 2004, vol. 12, pp. 511–27.

    Article  Google Scholar 

  6. K. Inal, K.W. Neale, and A. Aoutajeddine: Int. J. Plast., 2005, vol. 21, pp. 1255–66.

    Article  Google Scholar 

  7. K. Janssens, F. Lambert, S. Vanrostenberghe, and M. Vermeulen: J. Mater. Process. Technol., 2001, vol. 112, pp. 174–84.

    Article  CAS  Google Scholar 

  8. R. Hill: J. Mech. Phys. Solids, 1952, vol. 1, pp. 19–30.

    Article  Google Scholar 

  9. X. Duan, M. Jain, D. Metzger, J. Kang, D.S. Wilkinson, and J.D. Embury: Mater. Sci. Eng., A, 2005, vol. 394, pp. 192–203.

    Article  CAS  Google Scholar 

  10. W. Hotz: GOM User Meeting, Braunschweig, Germany, 2004.

  11. K. Nakajima, T. Kikuuma, and K. Hasuka: “Yawata Technical Report No. 284”, Yawata, Japan, 1971, pp 678–90.

  12. W.Y. Fowlkes and C.M. Creveling: Engineering Methods for Robust Product Design Using Taguchi Methods in Technology and Product Development, Addison-Wesley, Reading, MA, 1995.

    Google Scholar 

  13. D.R. Metzger, X. Duan, and M. Jain: Paper presented at the American Society of Mechanical Engineers, Pressure Vessels and Piping Division, Denver, CO, July 17–21, 2005, Paper Number PVP2005-71383.

  14. M. Moore and P. Bate: J. Mater. Process. Technol., 2002, vols. 125–26, pp. 258–66.

    Article  Google Scholar 

  15. E. Voce: J. Inst. Met., 1948, vol. 74, pp. 537–62.

    CAS  Google Scholar 

  16. M. Oyane, T. Sato, K. Okimoto, and S. Shima: J. Mech. Working Technol., 1980, vol. 4, pp. 65–81.

    Article  CAS  Google Scholar 

  17. X. Duan, M. Bruhis, M. Jain, and D.S. Wilkinson: Adv. Mater. Res., 2005, vol. 66, pp. 737–44.

    Article  Google Scholar 

  18. ARAMIS 4.7, GOM mbH, Braunschweig, Germany, 2001.

  19. X. Duan, Y. Osokov, M. Jain, D.R. Metzger, and D.S. Wilkinson: unpublished report, McMaster University, Hamilton, Canada, 2005.

  20. C. Liu: Exp. Mech., 2005, vol. 45, pp. 238–43.

    Article  CAS  Google Scholar 

  21. Z.Y. Ren and Q.S. Zheng: J. Mech. Phys. Solids, 2002, vol. 50, pp. 881–93.

    Article  Google Scholar 

  22. P.D. Wu and D.J. Lloyd: Acta Mater., 2004, vol. 52, pp. 1785–98.

    Article  CAS  Google Scholar 

  23. F. Barlat, D.J. Ledge, and J.C. Brem: Int. J. Plast., 1991, vol. 7, pp. 693–712.

    Article  CAS  Google Scholar 

  24. F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S.H. Choi, and E. Chu: Int. J. Plast., 2003, vol. 19, pp. 1297–319.

    Article  CAS  Google Scholar 

  25. Z. Marciniak and K. Kuczynski: Int. J. Mech. Sci., 1967, vol. 9, pp. 609–20.

    Article  Google Scholar 

  26. A.L. Gurson: J. Eng. Mater. Technol., 1977, vol. 99, pp. 2–15.

    Google Scholar 

  27. V. Tvergaard and A. Needleman: Acta Metall., 1984, vol. 32, pp. 461–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, X., Jain, M. & Wilkinson, D.S. Development of a heterogeneous microstructurally based finite element model for the prediction of forming limit diagram for sheet material. Metall Mater Trans A 37, 3489–3501 (2006). https://doi.org/10.1007/s11661-006-1044-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-1044-4

Keywords

Navigation