Skip to main content
Log in

Strain hardening due to deformation twinning in α-titanium: Mechanisms

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Novel experiments were conducted to elucidate the effect of deformation twinning on the mechanical response of high-purity α-titanium deformed at room temperature. Orientation-imaging microscopy (OIM), microhardness, and nanohardness evaluations were employed in conjunction with optical microscopy and quasi-static compression testing to obtain insight into the deformation mechanisms. Hardness measurements revealed that the newly formed deformation twins were harder than the matrix. This observation is perhaps the first experimental evidence for the Basinski mechanism for hardening associated with twinning, arising from the transition of glissile dislocations to a sessile configuration upon the lattice reorientation by twinning shear. This work also provided direct evidence for two competing effects of deformation twinning on the overall stress-strain response: (1) hardening via both a reduction of the effective slip length (Hall-Petch effect) and an increase in the hardness of twinned regions (Basinski mechanism) and (2) softening due to the lattice reorientation of the twinned regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Eylon and S.R. Seagle: in Titanium 99: Science and Technology, I.V. Gorynin and S.S. Ushkov, eds., CRISM “PROMETEY,” St. Petersburg, 2000, pp. 37–41.

    Google Scholar 

  2. F.H. Froes, P.G. Allen, and M. Niinomi: in Non-Aerospace Applications of Titanium, F.H. Froes, P.G. Allen, and M. Niinomi, eds., TMS, Warrendale, PA, 1998, pp. 3–18.

    Google Scholar 

  3. P.G. Partridge: Metall. Rev., 1967, vol. 12, pp. 169–94.

    CAS  Google Scholar 

  4. J.W. Christian and S. Mahajan: Progr. Mater. Sci., 1995, vol. 39, pp. 1–157.

    Article  Google Scholar 

  5. A.T. Santhanam and R.E. Reed-Hill: Metall. Trans., 1971, vol. 2, pp. 2619–22.

    Article  CAS  Google Scholar 

  6. G.T. Gray III, G.C. Kaschner, T.A. Mason, P.J. Maudlin, and S.R. Chen: in Advances in Twinning, S. Ankem and C.S. Pande, eds., TMS, Warrendale, PA, 1999, pp. 157–70.

    Google Scholar 

  7. S. Nemat-Nasser, W.G. Guo, and J.Y. Cheng: Acta Mater., 1999, vol. 47, pp. 3705–20.

    Article  CAS  Google Scholar 

  8. R.J. Wasilewski: Trans. ASM, 1963, vol. 56, pp. 221–35.

    CAS  Google Scholar 

  9. A.M. Garde and R.E. Reed-Hill: Metall. Trans., 1971, vol. 2, pp. 2885–88.

    CAS  Google Scholar 

  10. S.V. Kailas, Y.V.R.K. Prasad, and S.K. Biswas: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1425–34.

    Google Scholar 

  11. A. Akhtar and E. Teghtsoonian: Metall. Trans. A, 1975, vol. 6A, pp. 2201–08.

    CAS  Google Scholar 

  12. A.A. Salem, S.R. Kalidindi, and R.D. Doherty: Scripta Mater., 2002, vol. 46, pp. 419–23.

    Article  CAS  Google Scholar 

  13. A.A. Salem, S.R. Kalidindi, and R.D. Doherty: Acta Mater., 2003, vol. 51, pp. 4225–37.

    Article  CAS  Google Scholar 

  14. S.R. Kalidindi, A.A. Salem, and R.D. Doherty: Adv. Eng. Mater., 2003, vol. 5, pp. 229–32.

    Article  CAS  Google Scholar 

  15. A.A. Salem, S.R. Kalidindi, R.D. Doherty, M.G. Glavicic, and S.L. Semiatin: in Ti-2003: Science and Technology, G. Luetjering, ed., Wiley-VCH, Hamburg, Germany, 2004, pp. 1429–36.

    Google Scholar 

  16. M. Doner and H. Conrad: Metall. Trans., 1973, vol. 4, pp. 2809–17.

    CAS  Google Scholar 

  17. S.N. Monteiro and R.E. Reed-Hill: Metall. Trans., 1973, vol. 4, pp. 1011–15.

    CAS  Google Scholar 

  18. A.M. Garde, A.T. Santhanam, and R.E. Reed-Hill: Acta Metall., 1972, vol. 20, pp. 215–20.

    Article  CAS  Google Scholar 

  19. S. Mahajan and G.Y. Chin: Acta Metall., 1973, vol. 21, pp. 173–79.

    Article  CAS  Google Scholar 

  20. E.O. Hall: Proc. Phys. Soc. B, 1951, vol. 64, pp. 747–53.

    Article  Google Scholar 

  21. N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25–28.

    CAS  Google Scholar 

  22. G.T. Gray III: J. Phys. IV Coll., 1997, vol. 7, pp. 423–28.

    Google Scholar 

  23. M.H. Yoo and C.T. Wei: Phil. Mag., 1966, vol. 14, pp. 573–87.

    CAS  Google Scholar 

  24. D.R. Chichili, K.T. Ramesh, and K.J. Hemker. Acta Mater., 1998, vol. 46, pp. 1025–43.

    Article  CAS  Google Scholar 

  25. Z.S. Basinski, M.S. Szczerba, M. Niewczas, J.D. Embury, and S.J. Basinski: Rev. Metall., 1997, vol. 94, pp. 1037–43.

    CAS  Google Scholar 

  26. A.W. Sleeswyk and G.A. Verbraak: Acta Metall., 1961, vol. 9, pp. 917–27.

    Article  CAS  Google Scholar 

  27. S. Mahajan and G.Y. Chin: Acta Metall., 1974, vol. 22, pp. 1113–19.

    Article  CAS  Google Scholar 

  28. N.E. Paton and W.A. Backofen: Metall. Trans., 1970, vol. 1, pp. 2839–47.

    CAS  Google Scholar 

  29. S.G. Song and G.T. Gray III: Acta Mater., 1995, vol. 43, pp. 2339–50.

    Article  CAS  Google Scholar 

  30. A.A. Salem, S.R. Kalidindi, and S.L. Semiatin: Acta Mater., 2005, vol. 53, pp. 3495–3502.

    Article  CAS  Google Scholar 

  31. S. Asgari, E. El-Danaf, S.R. Kalidindi, and R.D. Doherty: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1781–94.

    Article  CAS  Google Scholar 

  32. C.N. Tome, S.R. Agnew, W.R. Blumenthal, M.A.M. Bourke, D.W. Brown, G.C. Kaschner, and P. Rangaswamy: Mater. Sci. Forum, 2002, vol. 408, pp. 263–68.

    Article  Google Scholar 

  33. U.F. Kocks, C.N. Tome, and H.-R. Wenk: Texture and Anisotropy, Cambridge University Press, Cambridge, United Kingdom, 1998.

    Google Scholar 

  34. S.R. Kalidindi: J. Mech. Phys. Solids, 1998, vol. 46, pp. 267–90.

    Article  CAS  Google Scholar 

  35. A.R. Smimov and V.A. Moskalenko: Mater. Sci. Eng. A, 2002, vol. A327, pp. 138–43.

    Google Scholar 

  36. A.R. Smirnov and V.A. Moskalenko: Acta Metall., 1994, vol. 42, pp. 2603–07.

    Article  CAS  Google Scholar 

  37. V.A. Moskalenko and A.R. Smirnov: Mater. Sci. Eng. A, 1998, vol. A246, pp. 282–88.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salem, A.A., Kalidindi, S.R., Doherty, R.D. et al. Strain hardening due to deformation twinning in α-titanium: Mechanisms. Metall Mater Trans A 37, 259–268 (2006). https://doi.org/10.1007/s11661-006-0171-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-0171-2

Keywords

Navigation