Skip to main content
Log in

Edge-to-edge matching—The fundamentals

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The basis of the present authors’ edge-to-edge matching model for understanding the crystallography of partially coherent precipitates is the minimization of the energy of the interface between the two phases. For relatively simple crystal structures, this energy minimization occurs when close-packed, or relatively close-packed, rows of atoms match across the interface. Hence, the fundamental principle behind edge-to-edge matching is that the directions in each phase that correspond to the “edges” of the planes that meet in the interface should be close-packed, or relatively close-packed, rows of atoms. A few of the recently reported examples of what is termed “edge-to-edge matching” appear to ignore this fundamental principle. By comparing theoretical predictions with available experimental data, this article will explore the validity of this critical atom-row coincidence condition, in situations where the two phases have simple crystal structures and in those where the precipitate has a more complex structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.M. Kelly and M.-X. Zhang: Mater. Forum, 1999, vol. 23, pp. 41–62.

    CAS  Google Scholar 

  2. M.-X. Zhang and P.M. Kelly: Acta Mater., 1998, vol. 46, pp. 4617–28.

    Article  CAS  Google Scholar 

  3. J.F. Nie and B.C. Muddle: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2381–89.

    CAS  Google Scholar 

  4. W.T. Reynolds, Jr., J.F. Nie, W.-Z. Zhang, J.M. Howe, H.I. Aaronson, and G.R. Purdy: Scripta Mater., 2003, vol. 49, pp. 405–10.

    Article  CAS  Google Scholar 

  5. J.M. Howe, W.T. Reynolds, Jr., and V.K. Vasudevan: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2391–411.

    CAS  Google Scholar 

  6. Hume-Rothery Symposium on “Structure and Diffusional Growth Mechanisms of Irrational Interphase Boundaries,” 2004 TMS Meeting, Charlotte, NC.

  7. G.J. Shiflet and J.H. van der Merwe: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1895–903.

    Google Scholar 

  8. F.C. Frank: Acta Metall., 1953, vol. 1, pp. 15–21.

    Article  CAS  Google Scholar 

  9. U. Dahmen: Scripta Metall., 1981, vol. 15, pp. 77–81.

    Article  Google Scholar 

  10. U. Dahmen: Acta Metall., 1982, vol. 30, pp. 63–73.

    Article  CAS  Google Scholar 

  11. U. Dahmen, P. Ferguson, and K.H. Westmacott: Acta Metall., 1984, vol. 32, pp. 803–10.

    Article  CAS  Google Scholar 

  12. U. Dahmen and K.H. Westmacott: Acta Metall., 1986, vol. 34, pp. 475–82.

    Article  CAS  Google Scholar 

  13. C.P. Luo and G.C. Weatherly: Acta Metall., 1987, vol. 35, pp. 1963–72.

    Article  CAS  Google Scholar 

  14. U. Dahmen: Encyclopedia of Physical Science and Technology, Academic Press Inc., San Diego, CA, 1987, vol. 10, pp. 319–54.

    Google Scholar 

  15. C.P. Luo, U. Dahmen, and K.H. Westmacott: Acta Metall. Mater., 1994, vol. 42, pp. 1923–32.

    Article  Google Scholar 

  16. U. Dahmen: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1857–63.

    CAS  Google Scholar 

  17. C.P. Luo and U. Dahmen: Acta Mater., 1998, vol. 46, pp. 2063–81.

    Article  CAS  Google Scholar 

  18. T. Fujii, T. Mori, and M. Kato: Acta Metall. Mater., 1992, vol. 40, pp. 3413–20.

    Article  CAS  Google Scholar 

  19. M. Kato, T. Fujii, and T. Mori: Scripta Metall. Mater., 1993, vol. 28, pp. 1167–70.

    Article  Google Scholar 

  20. J.K. Chen and W.T.J. Reynolds: Acta Mater., 1997, vol. 45, pp. 4423–30.

    Article  CAS  Google Scholar 

  21. Q. Liang and W.T. Reynolds: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2059–72.

    Article  CAS  Google Scholar 

  22. D.A. Smith and R.C. Pond: Int. Met. Rev., 1976, pp. 61–74.

  23. R.C. Ecob and B. Ralph: Acta Metall., 1981, vol. 29, pp. 1037–46.

    Article  CAS  Google Scholar 

  24. K.M. Knowles, D.A. Smith, and W.A.T. Clark: Scripta Metall., 1982, vol. 16, pp. 413–16.

    Article  CAS  Google Scholar 

  25. M.G. Hall, J.M. Rigsbee, and H.I. Aaronson: Acta Metall., 1986, vol. 34, pp. 1419–31.

    Article  CAS  Google Scholar 

  26. M.G. Hall and H.I. Aaronson: Acta Metall., 1986, vol. 34, pp. 1409–18.

    Article  CAS  Google Scholar 

  27. Y. Mou: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1905–15.

    CAS  Google Scholar 

  28. G.R. Purdy and W.-Z. Zhang: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1875–83.

    CAS  Google Scholar 

  29. G.C. Weatherly and W.-Z. Zhang: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1865–74.

    CAS  Google Scholar 

  30. W.-Z. Zhang and G.R. Purdy: Scripta Mater., 1997, vol. 37, pp. 543–48.

    Article  CAS  Google Scholar 

  31. W.-Z. Zhang and G.R. Purdy: Phil. Mag. A, 1993, vol. 68, pp. 279–90.

    Google Scholar 

  32. W.-Z. Zhang and G.R. Purdy: Phil. Mag. A, 1993, vol. 68, pp. 291–303.

    Google Scholar 

  33. W.-Z. Zhang and G.C. Weatherly: Progr. Mater. Sci., 2005, vol. 50, pp. 181–292.

    CAS  Google Scholar 

  34. M.G. Hall, H.I. Aaronson, and K.R. Kinsman: Surface Sci., 1972, vol. 31, pp. 257–74.

    Article  CAS  Google Scholar 

  35. J.M. Rigsbee and H.I. Aaronson: Acta Metall., 1979, vol. 27, pp. 351–63.

    Article  CAS  Google Scholar 

  36. D.S. Zhou, R.W. Fonda, and G.J. Shiflet: Scripta Metall. Mater., 1991, vol. 25, pp. 2639–44.

    Article  CAS  Google Scholar 

  37. G.J. Shiflet and J.H. Van der Merwe: J. Electron. Mater., 1991, vol. 20, pp. 785–91.

    Google Scholar 

  38. J.M. Howe and D.A. Smith: Acta Metall. Mater., 1992, vol. 40, pp. 2343–90.

    Article  CAS  Google Scholar 

  39. J.H. Van der Merwe and G.J. Shiflet: Acta Metall. Mater., 1994, vol. 42, pp. 1173–87.

    Article  Google Scholar 

  40. J.P. Hirth: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1885–903.

    Google Scholar 

  41. J.F. Nie: Acta Mater., 2004, vol. 32, pp. 795–807.

    Article  Google Scholar 

  42. W. Pitsch: J. Inst. Met., 1959, vol. 87, pp. 444–48; Phil. Mag., 1959, vol. 4, pp. 577–84.

    CAS  Google Scholar 

  43. G.V. Kurdjumov and G. Sachs: Z. Phys., 1930, vol. 64, pp. 325–43.

    Article  Google Scholar 

  44. Z. Nishiyama: Sci. Rep. Tohoku Univ., 1934, vol. 23, pp. 637–64.

    CAS  Google Scholar 

  45. G. Wassermann: Arch. Eisenhüttenwes., 1933, vol. 6, pp. 347–51.

    CAS  Google Scholar 

  46. N.E. Ryan, W.A. Soffa, and R.C. Crawford: Metallography, 1968, vol. 1, pp. 195–220.

    Article  CAS  Google Scholar 

  47. E.C. Bain: Trans. AIME, 1924, vol. 70, pp. 25–35.

    Google Scholar 

  48. R.G. Baker and J. Nutting: ISI Spec. Rep. No. 64, 1959, pp. 1–22.

  49. M.-X. Zhang and P.M. Kelly: Acta. Mater., 2005, vol. 53, pp. 1073–84.

    Article  CAS  Google Scholar 

  50. D.I. Potter: J. Less-Common Met., 1973, vol. 31, pp. 299–309.

    Article  CAS  Google Scholar 

  51. W. Pitsch and A. Schrader: Arch. Eisenhüttenwes., 1958, vol. 29, pp. 715–21.

    CAS  Google Scholar 

  52. W. Rong and G.L. Dunlop: Acta Metall., 1984, vol. 32, pp. 1591–99.

    Article  CAS  Google Scholar 

  53. W.G. Burgers: Physica, 1934, vol. 1, pp. 561–86.

    Article  CAS  Google Scholar 

  54. D. Duly: Acta Metall. Mater., 1993, vol. 41, pp. 1559–66.

    Article  CAS  Google Scholar 

  55. W.-Z. Zhang and G.R. Purdy: Acta Metall. Mater., 1993, vol. 41, pp. 543–51.

    Article  CAS  Google Scholar 

  56. F. Ye, W.-Z. Zhang, and D. Qiu: Acta Mater., 2005, vol. 52, pp. 2449–60.

    Article  Google Scholar 

  57. M.-X. Zhang and P.M. Kelly: Scripta Mater., 2003, vol. 48, pp. 379–84.

    Article  CAS  Google Scholar 

  58. D. Duly, W.-Z. Zhang, and M. Audier: Phil. Mag. A, 1995, vol. 71, pp. 187–204.

    CAS  Google Scholar 

  59. S. Celotto: Acta Mater., 2000, vol. 48, pp. 1775–87.

    Article  CAS  Google Scholar 

  60. J.F. Nie, X.L. Xiao, C.P. Luo, and B.C. Muddle: Micron, 2001, vol. 32, pp. 857–63.

    Article  CAS  Google Scholar 

  61. M.-X. Zhang and P.M. Kelly: Scripta Mater., 2003, vol. 48, pp. 647–52.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made in the “Hume-Rothery Symposium on Structure and Diffusional Growth Mechanisms of Irrational Interphase Boundaries,” which occurred during the TMS Winter meeting, March 15–17, 2004, in Charlotte, NC, under the auspices of the TMS Alloy Phases Committee and the co-sponsorship of the TMS-ASM Phase Transformations Committee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, P.M., Zhang, M.X. Edge-to-edge matching—The fundamentals. Metall Mater Trans A 37, 833–839 (2006). https://doi.org/10.1007/s11661-006-0056-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-0056-4

Keywords

Navigation