Skip to main content
Log in

Deformation characteristics of isothermally forged UDIMET 720 nickel-base superalloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The hot deformation behavior of nickel-base superalloy UDIMET 720 in solution-treated conditions, simulating the forging process of the alloy, was studied using hot compression experiments. Specimens were deformed in the temperature range of 1000 °C to 1175 °C with strain rates of 10−3 to 1 s−1 and total strain of 0.8. Below 1100 °C, all specimens showed flow localization as shear band through the diagonal direction, with more severity at higher strain rates. A uniform deformation was observed when testing between 1100 °C and 1150 °C with dynamic recrystallization as the major flow softening mechanism above 1125 °C. Deformation above γ′ solvus temperature was accompanied with grain boundary separation. The hot working window was determined to be in the interval 1100 °C to 1150 °C. Thermomechanical behavior of the material was modeled using the power-law, the Sellars-Tegart, and an empirical equation. The flow stress values showed a nonlinear dependence of strain rate sensitivity to strain rate. The analysis indicated that the empirical method provides a better constitutive equation for process modeling of this alloy. The apparent activation energy for deformation was calculated and its variations with strain rate and temperature are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Gao and R.V. Grandhi: Int. J. Machine Tools Manufacture, 2000, vol. 40, pp. 691–710.

    Article  Google Scholar 

  2. G. Fleury, F. Schubert, and H. Nickel: Computat. Mater. Sci., 1996, vol. 7, pp. 187–93.

    Article  CAS  Google Scholar 

  3. F.E. Sczerzenie and G.E. Maurer: Superalloys 1984, Proc. 5th Int. Symp. on Superalloys, TMS-AIME, Warrendale, PA, 1984, pp. 573–82.

    Book  Google Scholar 

  4. H. Hattori, M. Takekawa, D. Furrer, and R.J. Noel: Superalloys 1996, R.D. Kissinger, D.J. Deye, D.L. Anton, and A.D. Cetel, eds., TMS, Warrendale, PA, 1996, pp. 705–11.

    Google Scholar 

  5. J.M. Hyzak and S.H. Reichman: Proc. Conf. on Advance in High Temperature Structural Materials and Protective Coatings, Ottawa, ON, Canada, 1994, pp. 126–46.

  6. D.J. Bryant and G. McIntosh: Superalloys 1996, R.D. Kissinger, D.J. Deye, D.L. Anton, and A.D. Cetel, eds., TMS, Warrendale, PA, 1996, pp. 713–22.

    Google Scholar 

  7. I. Calliari, M. Magrini, and M. Dabala: J. Mater. Eng. Performance, 1999, vol. 8, pp. 111–15.

    Article  CAS  Google Scholar 

  8. D.U. Furrer and H.J. Fecht: Scripta Mater., 1999, vol. 40, pp. 1215–20.

    Article  CAS  Google Scholar 

  9. M.P. Jackson and R.C. Reed: Mater. Sci. Eng., 1999, vol. A259, pp. 85–97.

    Article  CAS  Google Scholar 

  10. D.U. Furrer and H.J. Fecht: Superalloys 2000, A. Green, T.M. Pollock, and R.D. Kissinger, eds., TMS, Warrendale, PA, 2000, pp. 415–24.

    Google Scholar 

  11. P.W. Keefe, S.O. Mancuso, and G.E. Maurer: Superalloys 1992, S.D. Antonovich, R.W. Stusrud, R.A. Mackay, D.L. Anton, T. Khan, R.D. Kissinger, and D.L. Klarstrom, eds., TMS, Warrendale, PA, 1992, pp. 487–96.

    Google Scholar 

  12. R.C. Reed, M.P. Jackson, and Y.S. Na: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 521–33.

    Article  CAS  Google Scholar 

  13. ASTM Standards, ASTM, Philadelphia, PA, vol. 03.03, E 112-88.

  14. George E. Dieter: Mechanical Metallurgy, 2nd ed., McGraw Hill Book Co., New York, NY, 1976, p. 138.

    Google Scholar 

  15. R. Ebrahimi, A. Najafizadeh, and R. Shateri: Proc. Steel Symp. 81, Iranian Institute for Iron and Steel, Isphahan, Iran, Mar. 2–3, 2003, pp. 230–37.

  16. S.I. Oh, S.L. Semiatin, and J.J. Jonas: Metall. Trans. A, 1992, vol. 23A, pp. 963–75.

    Article  CAS  Google Scholar 

  17. A.K. Koul and J.-P. Immarigeon: Acta Metall., 1987, vol. 35, pp. 1791–805.

    Article  CAS  Google Scholar 

  18. M.C. Somani, K. Muraleedharan, Y.V.R.K. Prasad, and V. Singh: Mater. Sci. Eng., 1998, vol. A245, pp. 88–99.

    Article  CAS  Google Scholar 

  19. A.J. Brand, K. Karhausen, and R. Kopp: Mater. Sci. Technol., 1996, vol. 12, pp. 963–68.

    Article  CAS  Google Scholar 

  20. S.C. Medeiros, Y.V.R.K. Prasad, W.G. Frazier, and R. Srinivasan: Mater. Sci. Eng., 2000, vol. A293, pp. 198–207.

    Article  CAS  Google Scholar 

  21. A.A. Guimaraes and J.J. Jonas: Metall. Trans. A, 1981, vol. 12A, pp. 1655–66.

    Article  Google Scholar 

  22. A. Kelly and R.B. Nicholson: Progr. Mater. Sci., 1967, vol. 10, p. 984.

    Google Scholar 

  23. H. Monajati, M. Jahazi, R. Bahrami, and S. Yue: Mater. Sci. Eng., 2004, vol. A373, pp. 286–93.

    Article  CAS  Google Scholar 

  24. F. Moneheillet and J.J. Jonas: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3346–48.

    Article  Google Scholar 

  25. C.M. Sellars and W.J. Tegart: Acta Metall., 1966, vol. 14, pp. 1136–38.

    Article  CAS  Google Scholar 

  26. H.J. McQueen and N.D. Ryan: Mater. Sci. Eng., 2002, vol. A322, pp. 43–63.

    Article  CAS  Google Scholar 

  27. P. Dadras and J.F. Thomas, Jr.: Metall. Trans. A, 1981, vol. 12A, pp. 1867–1976.

    Article  Google Scholar 

  28. A.R. Mashreghi, H. Monajatizadeh, M. Jahazi, and S. Yue: Mater. Sci. Technol., 2004, vol. 20, pp. 161–66.

    Article  CAS  Google Scholar 

  29. S.C. Medeiros, Y.V.R.K. Prasad, W.G. Frazier, and R. Sirinivasan: Scripta Mater., 2000, vol. 42, pp. 17–23.

    Article  CAS  Google Scholar 

  30. C.I. Garcia, G.D. Wang, D.E. Camus, E.A. Loria, and A.J. DeArdo: in Superalloy 718, 625, 706 and Various Derivation, E.A. Loria, ed., TMS, Warrendale, PA, 1994, pp. 293–302.

    Chapter  Google Scholar 

  31. B.P. Kashyap and C. Chaturvedi: Scripta Mater., 2000, vol. 43, pp. 429–33.

    Article  CAS  Google Scholar 

  32. D.W. Livesey and C.M. Sellars: Mater. Sci. Technol., 1985, vol. 1, pp. 136–44.

    Article  CAS  Google Scholar 

  33. G. Shen, S.L. Semiatin, and R. Shivpuri: Metall. Trans. A, 1995, vol. 26A, pp. 1795–1803.

    Article  CAS  Google Scholar 

  34. S.M. Roberts, C.A. Walsh, J.P. Lewis, R.W. Evans, and R.C. Reed: Rolls-Royce University Technology Center, University of Cambridge, Cambridge, United Kingdom, unpublished research, 2004.

    Google Scholar 

  35. L. Briottet, J.J. Jonas, and F. Montheillet: Acta Mater., 1996, vol. 44, pp. 1665–72.

    Article  Google Scholar 

  36. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon, Elsevier Science Inc., Tarrytown, NY, 1996, p. 271.

    Google Scholar 

  37. E.I. Poliak and J.J. Jonas: Acta Mater., 1996, vol. 44, pp. 127–36.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monajati, H., Taheri, A.K., Jahazi, M. et al. Deformation characteristics of isothermally forged UDIMET 720 nickel-base superalloy. Metall Mater Trans A 36, 895–905 (2005). https://doi.org/10.1007/s11661-005-0284-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0284-z

Keywords

Navigation