Skip to main content
Log in

Four-point-bend fatigue of AA 2026 aluminum alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High-cycle fatigue tests were carried out on a newly developed high-strength AA 2026 Al alloy, which was in the form of extrusion bars with square and rectangular cross sections, using a self-aligning four-point-bend rig at room temperature, 15 Hz, and R = 0.1, in lab air. The fatigue strength of the square and rectangular bars was measured to be 85 and 90 pct of their yield strength, respectively, more than twice that of the predecessor to the 2026 alloy (the AA 2024 Al alloy). Fatigue cracks were found to be always initiated at large Θ′ (Al7Cu2(Fe,Mn)) particles and to propagate predominantly in a crystallographic mode in the AA 2026 alloy. The fatigue fractographies of the square and rectangular extrusion bars were found to be markedly different, due to their different grain structures (fibril and layered, respectively). Fracture steps on the crack face were found in both of these extrusion bars. Since the 2026 alloy was purer in terms of Fe and Si content, it contained much less coarse particles than in a 2024 alloy. This partially accounted for the superior fatigue strength of the 2026 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ratchev, B. Verlinden, P.D. Smet, and P.V. Houtte: Acta Mater., 1998, vol. 46, pp. 3523–33.

    Article  CAS  Google Scholar 

  2. V. Radmilovic, R. Kilaas, U. Dahmen, and G.J. Shiflet: Acta Mater., 1999, vol. 47, pp. 3987–97.

    Article  CAS  Google Scholar 

  3. S.E. Axter, W.B. Jones, and D.H. Polonis: Metallography, 1975, vol. 8, pp. 425–38.

    Article  CAS  Google Scholar 

  4. E.A. Debartolo and B.M. Hillberry: Int. J. Fatigue, 1998, vol. 20, pp. 727–35.

    Article  CAS  Google Scholar 

  5. W.L. Haworth, A.F. Hieber, and R.K. Mueller: Metall. Trans. A, 1977, vol. 8A, pp. 1597–1604.

    CAS  Google Scholar 

  6. D. Sigler, M.C. Montpetit, and W.L. Haworth: Metall. Trans. A, 1983, vol. 14A, pp. 931–38.

    Google Scholar 

  7. B. Sarkar and W.B. Lisagor: Scripta Metall. Mater., 1992, vol. 26, 169–74.

    Article  CAS  Google Scholar 

  8. A. Zabett and A. Plumtree: Fatigue Fract. Eng. Mater. Struct., 1995, vol. 18, pp. 801–09.

    CAS  Google Scholar 

  9. C. Kaynak and A. Ankara: Eng. Fract. Mech., 1992, vol. 43, pp. 769–78.

    Article  Google Scholar 

  10. J. Zuidema and M. Mannesse: Eng. Fract. Mech., 1989, vol. 34, pp. 445–56.

    Article  Google Scholar 

  11. B.G. Journet, A. Lefrancois, and A. Pineau: Fatigue Fract. Eng. Mater. Struct., 1989, vol. 12, pp. 237–46.

    Article  Google Scholar 

  12. F. Sarioğlu and F.Ő. Orhaner: Mater. Sci. Eng., 1998, vol. A248, pp. 115–19.

    Google Scholar 

  13. J. Liu, G.H. Bray, D.A. Lukasak, and R.C. Pahl: U.S. Patent 6,325,869, Dec. 4, 2001.

  14. M.D. Garratt, G.H. Bray, and D.A. Koss: Proc. Materials Solutions Conf., Indianapolis, IN, 2001, ASM INTERNATIONAL, Materials Park, OH, 2001, pp. 151–59.

    Google Scholar 

  15. P. Kadolkar and N.B. Dahotre: Mater. Sci. Eng., 2003, vol. A342, pp. 183–91.

    CAS  Google Scholar 

  16. T. Shimokawa and Y. Hamaguchi: J. Eng. Mater. Technol., 1985, vol. 107, pp. 214–20.

    Article  Google Scholar 

  17. T. Zhai, Y.G. Xu, J.W. Martin, A.J. Wilkinson, and G.A.D. Briggs: Int. J. Fatigue, 1999, vol. 21, pp. 889–94.

    Article  Google Scholar 

  18. B. Ren: U.S. Patent 6,602,363, Aug. 5, 2003.

  19. C.R. Hutchinson and S.P. Ringer: Metall. and Mater. Trans. A, 2000, vol. 31A, pp. 2721–33.

    Article  CAS  Google Scholar 

  20. L.M. Wang, H.M. Flower, and T.C. Lindley: Scripta Mater., 1999, vol. 41, pp. 391–96.

    Article  CAS  Google Scholar 

  21. B.Q. Li and F.E. Wawner: Acta Mater., 1998, vol. 46, pp. 5483–90.

    Article  CAS  Google Scholar 

  22. C.Y. Kung and M.E. Fine: Metall. Trans. A, 1979, vol. 10A, pp. 603–10.

    CAS  Google Scholar 

  23. L.F. Mondolfo: Aluminum Alloys, Structure and Properties, Butterworths, Boston, MA, 1976, p. 842.

    Google Scholar 

  24. Steven R. Lampman: ASM Handbook, ASM INTERNATIONAL, Materials Park, OH, 1994, vol. 19, pp. 786.

    Google Scholar 

  25. S.E. Aster, W.B. Jones, and D.H. Polonis: Metallography, 1975, vol. 8, pp. 425–38.

    Article  Google Scholar 

  26. R. Gürbüz and S.P. Alpay: Scripta Metall. Mater., 1994, vol. 30, pp. 1373–76.

    Article  Google Scholar 

  27. S. Suresh and R.O. Ritchie: Int. Met. Rev., 1984, vol. 29, pp. 445–76.

    Google Scholar 

  28. T. Zhai, A.J. Wilkinson, and J.W. Martin: Acta Mater., 2000, vol. 48, pp. 4917–27.

    Article  CAS  Google Scholar 

  29. K.S. Chan, Metall. Trans. A, 1991, vol. 22A, pp. 2021–29.

    CAS  Google Scholar 

  30. T. Zhai, A.J. Wilkinson, J.W. Martin, and I.G. Palmer: Proc 7th Int. Conf. on Fatigue ’99, Beijing, 1999, Higher Education Press, Beijing, China, 1999, pp. 627–32.

    Google Scholar 

  31. K.S. Chan and D.S. Shih: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 79–90.

    CAS  Google Scholar 

  32. K.S. Chan and D.S. Shih: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 73–87.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J.X., Zhai, T., Garratt, M.D. et al. Four-point-bend fatigue of AA 2026 aluminum alloys. Metall Mater Trans A 36, 2529–2539 (2005). https://doi.org/10.1007/s11661-005-0126-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0126-z

Keywords

Navigation