Skip to main content
Log in

Laser cladding of quasi-crystal-forming Al-Cu-Fe-Bi on an Al-Si alloy substrate

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We report here the results of an investigation aimed at producing coatings containing phases closely related to the quasi-crystalline phase with dispersions of soft Bi particles using an Al-Cu-Fe-Bi elemental powder mixture on Al-10.5 at. pct Si substrates. A two-step process of cladding followed by remelting is used to fine-tune the alloying, phase distribution, and microstructure. A powder mix of Al64Cu22.3Fe11.7Bi2 has been used to form the clads. The basic reason for choosing Bi lies in the fact that it is immiscible with each of the constituent elements. Therefore, it is expected that Bi will solidify in the form of dispersoids during the rapid solidification. A detailed microstructural analysis has been carried out by using the backscattered imaging mode in a scanning electron microscope (SEM) and transmission electron microscope (TEM). The microstructural features are described in terms of layers of different phases. Contrary to our expectation, the quasi-crystalline phase could not form on the Al-Si substrate. The bottom of the clad and remelted layers shows the regrowth of aluminum. The formation of phases such as blocky hexagonal Al-Fe-Si and a ternary eutectic (Al + CuAl2 + Si) have been found in this layer. The middle layer shows the formation of long plate-shaped Al13Fe4 along with hexagonal Al-Fe-Si phase growing at the periphery of the former. The formation of metastable Al-Al6Fe eutectic has also been found in this layer. The top layer, in the case of the as-clad track, shows the presence of plate-shaped Al13Fe4 along with a 1/1 cubic rational approximant of a quasi-crystal. The top layer of the remelted track shows the presence of a significant amount of a 1/1 cubic rational approximant. In addition, the as-clad and remelted microstructures show a fine-scale dispersion of Bi particles of different sizes formed during monotectic solidification. The remelting is found to have a strong effect on the size and distribution of Bi particles. The dry-sliding wear properties of the samples show the improvement of wear properties for Bi-containing clads. The best tribological properties are observed in the as-clad state, and remelting deteriorates the wear properties. The low coefficient of friction of the as-clad and remelted track is due to the presence of approximant phases. There is evidence of severe subsurface deformation during the wear process leading to cracking of hard phases and a change in the size and shape of soft Bi particles. Using these observations, we have rationalized possible wear mechanisms in the Bi-containing surface-alloyed layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Shectmann, I. Blech, D. Gratias, and J.W. Cahn: Phys. Rev. Lett., 1984, vol. 53 (20), pp. 1951–53.

    Article  Google Scholar 

  2. S.S. Kang and J.M. Dubois: Phil. Mag. A, 1992, vol. 66 (1), pp. 151–63.

    CAS  Google Scholar 

  3. J.M. Dubois, S.S. Kang, and J. von Stebut: J. Mater. Sci. Lett., 1991, vol. 10, pp. 537–41.

    Article  CAS  Google Scholar 

  4. P. Archambault and C. Janot: MRS Bull., 1997, vol. 22 (11), pp. 48–53.

    CAS  Google Scholar 

  5. C.J. Jenks and P. Thiel: MRS Bull., 1997, vol. 22 (11), pp. 55–58.

    CAS  Google Scholar 

  6. J.M. Dubois, S.S. Kang, and Y. Massiani: J. Non-Crystalline Solids, 1993, vols. 153–54, pp. 443–45.

    Article  Google Scholar 

  7. K. Urban, M. Feuerbacher, and M. Wollgarten: MRS Bull., 1997, vol. 22 (11), pp. 65–68.

    CAS  Google Scholar 

  8. A.P. Tsai, A. Inoue, and T. Masumoto: Jpn. J. Appl. Phys., 1987, vol. 26 (9), pp. L1505-L1507.

    Article  CAS  Google Scholar 

  9. J.M. Dubois: in New Horizons in Quasicrystals (Research and Applications), A.I. Goldmann, D.J. Sordelet, P.A. Thiel, and J.M. Dubois, eds., World Scientific Publishing, Singapore, 1997, pp. 208–15.

    Google Scholar 

  10. S.M. Lee, B.H. Kim, S.H. Kim, E. Fleury, W.T. Kim, and D.H. Kim: Mater. Sci. Eng. A, 2000, vols. 294–96, pp. 93–98.

    Google Scholar 

  11. A. Quivy, M. Quiquandon, Y. Calvayrac, F. Faudot, D. Gratias, C. Berger, R.A. Brand, V. Simnonet, and F. Hippert: J. Phys. Condens. Mater., 1996, vol. 8, pp. 4223–4334.

    Article  CAS  Google Scholar 

  12. R. Vilar: J. Laser Applic., 1999, vol. 11 (2), pp. 64–79.

    Article  CAS  Google Scholar 

  13. L.A. Bendersky, A.J. McAlister, and F.S. Biancaniello: Metall. Trans. A, 1988, vol. 19A, pp. 2893–2900.

    CAS  Google Scholar 

  14. V. Elser and C.L. Henley: Phys. Rev. Lett., 1985, vol. 55 (26), pp. 2883–86.

    Article  CAS  Google Scholar 

  15. A.P. Tsai, A. Inoue, and T. Masumoto: J. Mater. Sci. Lett., 1989, vol. 8, pp. 470–72.

    Article  CAS  Google Scholar 

  16. S.S. Kang, J.M. Dubois, and J. von Stebut: J. Mater. Res., 1993, vol. 8 (10), pp. 2471–81.

    CAS  Google Scholar 

  17. M. Rappaz, G. Gremud, R. Dekumbis, and W. Kurz: in Laser Treatment of Materials, Barry L. Mordike, ed., 1987, pp. 43–53.

  18. M. Zimmermann, M. Carrad, and W. Kurz: Acta Metall., 1989, vol. 37, pp. 3305–13.

    Article  CAS  Google Scholar 

  19. S. Sarkar, P. Mohan Raj, S. Chakraborty, G. Phanikumar, K. Chattopadhyay, and P. Dutta: J. Mater. Sci., 2003, vol. 38, pp. 155–64.

    Article  CAS  Google Scholar 

  20. B. Gruskho, R. Wittenberg, and D. Holland-Moritz: J. Mater. Res., 1996, vol. 11 (9), pp. 2177–85.

    Google Scholar 

  21. L. Zhang and R. Lück: Z. Metallkd., vol. 2, pp. 91–115.

  22. K. Biswas, K. Chattopadhyay, R. Galun, and B.L. Mordike: Mater. Res. Soc. Proc., 2004, vol. 805, pp. LL7.1.1-LL7.1.7.

    Google Scholar 

  23. Per Skjerpe: Metall. Trans. A, 1986, vol. 18A, pp. 189–200.

    Google Scholar 

  24. E. Louis, R. Mora, and J. Pastor: Met. Sci., 1980, vol. 14, pp. 591–93.

    Article  CAS  Google Scholar 

  25. K. Chattopadhyay, K. Biswas, S. Bysakh, G. Phanikumar, A. Weishit, R. Galun, and B.L. Mordike: Mater. Res. Soc. Proc., 2001, vol. 643, pp. K15.3.1-K15.3.12.

    CAS  Google Scholar 

  26. D.R. Uhlmann, B. Chalmers, and K.A. Jackson: J. Appl. Phys., 1964, vol. 35 (10), pp. 2986–93.

    Article  CAS  Google Scholar 

  27. U. Köster, H. Liebertz, and W. Liu: Mater. Sci. Eng., 1994, vols. A181–A182, pp. 777–80.

    Google Scholar 

  28. V. Bhattacharya and K. Chattopadhyay: Scripta Mater., 2001, vol. 44, pp. 1677–82.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, K., Chattopadhyay, K., Galun, R. et al. Laser cladding of quasi-crystal-forming Al-Cu-Fe-Bi on an Al-Si alloy substrate. Metall Mater Trans A 36, 1947–1964 (2005). https://doi.org/10.1007/s11661-005-0058-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0058-7

Keywords

Navigation