Skip to main content
Log in

Creep behavior of copper-chromium in-situ composite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Creep deformation and fracture behaviors were investigated on a deformation-processed Cu-Cr in-situ composite over a temperature range of 200 °C to 650 °C. It was found that the creep resistance increases significantly with the introduction of Cr fibers into Cu. The stress exponent and the activation energy for creep of the composite at high temperatures (≥400 °C) were observed to be 5.5 and 180 to 216 kJ/mol, respectively. The observation that the stress exponent and the activation energy for creep of the composite at high temperatures (≥400 °C) are close to those of pure Cu suggests that the creep deformation of the composite is dominated by the deformation of the Cu matrix. The high stress exponent at low temperatures (200 °C and 300 °C) is thought be associated with the as-swaged microstructure, which contains elongated dislocation cells and subgrains that are stable and act as strong athermal obstacles at low temperatures. The mechanism of damage was found to be similar for all the creep tests performed, but the distribution and extent of damage were found to be very sensitive to the test temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.L. Lee, A.F. Whitehouse, and A.C.F. Cocks: ICCM 12, Paris, 1999.

  2. K.L. Lee, H.E. Carroll, and A.F. Whitehouse: Mater. Sci. Technol., 2000, vol. 16, pp. 811–16.

    CAS  Google Scholar 

  3. K.L. Lee, A.F. Whitehouse, P.J. Withers, and M.R. Daymond: Mater. Sci. Eng. A, 2003, vol. A348, pp. 208–16.

    CAS  Google Scholar 

  4. K.L. Lee, A.F. Whitehouse, A.M. Russell, K. Wongpreedee, S.I. Hong, and P.J. Withers: J. Mater. Sci., 2003, vol. 38 (16), pp. 3433–37.

    Article  Google Scholar 

  5. K.L. Lee: Composite Part A, 2003, vol. 34 (12), pp. 1235–44.

    Article  CAS  Google Scholar 

  6. A.I. Somov, N.A. Tikhonovskii, N.F. Andrievskaya, and V.A. Sverdlov: Phys. Met. Metallogr., 1978, vol. 46 (6), pp. 87–93.

    Google Scholar 

  7. L. Peng, X. Mao, K. Xu, and W. Ding: Rare Metals (English Edition) (China), 2002, vol. 21 (1), pp. 62–66.

    CAS  Google Scholar 

  8. C. Masudaj, N. Minakawa, and Y. Tanaka: JAERI-Rev. (Japan), 2002, vol. 2002–006, p. 96.

    Google Scholar 

  9. J.D. Embury and C.W. Sinclair: Mater. Sci. Eng. A, 2001, vols. 319–321, pp. 37–45.

    Google Scholar 

  10. J.S. Song, S.I. Hong, and H.S. Kim: J. Mater. Processing Technol., 2001, vol. 113 (1–3), pp. 610–16.

    Article  CAS  Google Scholar 

  11. S. Onaka and M. Kato: Mater. Trans., JIM (Japan), 1999, vol. 40 (10), pp. 1102–07.

    CAS  Google Scholar 

  12. Y. Jin, K. Adachi, H.G. Suzuki, and T. Takeuchi: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2195–2203.

    Article  CAS  Google Scholar 

  13. C. Biselli and D.G. Morris: Proc. 2nd Int. Conf. on Spray Forming, Swansea, United Kingdom, 13–15 Sept., 1993, Woodhead Publishing Limited, United Kingdom, pp. 293–302.

  14. N.Y. Tang, D.M.R. Taplin, G.L. Dunlop, and A. Plumtree: Proc. Conf. on Creep and Fracture of Engineering Materials and Structures, Swansea, United Kingdom, 1–6 April, 1984, Pineridge Press Ltd., United Kingdom, vol. 1, pp. 235–44.

    Google Scholar 

  15. N.Y. Tang, D.M.R. Taplin, and G.L. Dunlop: Proc. Conf. on Strength of Metals and Alloys, Melbourne, Australia, 16–20 August, 1982, Pergamon Press, United Kingdom, vol. 2, pp. 665–70.

    Google Scholar 

  16. S.I. Hong and M.A. Hill: Mater. Sci. Eng. A, 2000, vol. 281, pp. 189–97.

    Article  Google Scholar 

  17. S.I. Hong and M.A. Hill: Acta Mater., 1998, vol. 46, pp. 4111–22.

    Article  CAS  Google Scholar 

  18. S.B. Biner and W.A. Spitzig: Mater. Sci. Eng. A, 1992, vol. 150 (2), pp. 213–20.

    Article  Google Scholar 

  19. S.I. Hong and M.A. Hill: Acta Mater., 1998, vol. 46, pp. 4111–22.

    Article  CAS  Google Scholar 

  20. A.M. Russell, L.S. Chumbley, and Y. Tian: Adv. Eng. Mater., 2000, vol. 2, pp. 11–22.

    Article  CAS  Google Scholar 

  21. Sun Ig Hong: Scripta Mater., 1998, vol. 39, pp. 1685–91.

    Article  CAS  Google Scholar 

  22. S. Sun: Metall. Mater. Trans. A, 2001, vol. 32, pp. 1225–32.

    Article  Google Scholar 

  23. D.J. Chakrabarti and D.E. Laughlin: in Binary Alloy Phase Diagrams, 2nd ed., T.B. Massalski, ed., ASM INTERNATIONAL, Materials Park, OH, 1990, vol. 2, p. 1267.

    Google Scholar 

  24. Z.Y. Ma and S.C. Tjong: Mater. Sci. Eng. A, 2000, vol. 284, pp. 70–76.

    Article  Google Scholar 

  25. H.J. Frost and M.F. Ashby: Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, United Kingdom, 1982, pp. 113–31.

    Google Scholar 

  26. C.J. Smithels: Metals Reference Book, Butterworth-Heineman, Boston, MA, 1992.

    Google Scholar 

  27. S.I. Hong, M.A. Hill, Y. Sakai, J.T. Wood, and J.D. Embury: Acta Metall. Mater., 1995, vol. 43, pp. 3313–23.

    Article  CAS  Google Scholar 

  28. S.I. Hong, J.H. Chung, and H.S. Kim: Key Eng. Mater., 2000, vol. 183, pp. 1207–12.

    Article  Google Scholar 

  29. S.E. Broyles, K.R. Anderson, J.R. Groza, and J.C. Gibeling: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1217–27.

    CAS  Google Scholar 

  30. M.S. Nagorka, G.E. Lucas, and C.G. Levi: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 873–81.

    CAS  Google Scholar 

  31. S.I. Hong, G.T. Gray, and J.J. Lewandowski: Acta Metall. Mater., 1993, vol. 41, pp. 2337–42.

    Article  CAS  Google Scholar 

  32. S.I. Hong, G.T. Gray, and V.C. Vecchio: Mater. Sci. Eng. A, 1993, vol. 171, pp. 431–40.

    Google Scholar 

  33. H.D. Chandler: Mater. Sci. Eng. A, 1993, vol. 169, pp. 27–32.

    Article  Google Scholar 

  34. K.L. Lee: Ph.D. Thesis, Leicester University, Leicester, United Kingdom, 2003.

    Google Scholar 

  35. T.L. Dragone and W.D. Nix: Acta Metall., 1990, vol. 38, pp. 1941–46.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K.L., Whitehouse, A.F., Hong, S.I. et al. Creep behavior of copper-chromium in-situ composite. Metall Mater Trans A 35, 695–705 (2004). https://doi.org/10.1007/s11661-004-0380-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0380-5

Keywords

Navigation