Skip to main content
Log in

Development of thermal strain in the coherent mushy zone during solidification of aluminum alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A constitutive equation for thermal strain in the mushy zone during solidification of aluminum alloys has been determined based on a two-phase volume-averaged description of the mushy zone. The change of linear dimensions in the horizontal plane of cast samples during solidification is investigated experimentally. The temperature when the solid part of the mushy zone starts to contract, and the total contraction of the solid part of the mushy zone, are determined experimentally. The constitutive model for thermal strain in the mushy zone reflects that there is no thermal strain in the solid part of the mushy zone at a low solid fraction and that the thermal strain in the mushy zone approaches thermal contraction in fully solid as the solid fraction increases towards one. The parameters in the constitutive model for thermal strain in the mushy zone are determined by combining experimental results with thermomechanical simulations of the experiments. The heat-transfer coefficients and the parameters in the model are tuned to make the simulations reproduce the experimentally determined temperature field and contraction. Al-Cu alloys with Cu concentrations from 0.3 to 9 wt pct Cu and an Al-7 wt pct Si-0.3 wt pct Mg alloy are tested both with and without grain refinement and at various cooling rates. The solid fractions when the alloys start to contract (g th s ) are in the range of 0.48 to 0.97. A lower solute concentration, grain refinement, and higher cooling rate increase g th s .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Campbell: Castings, Butterworth Heinemann, Oxford, United Kingdom, 1991.

    Google Scholar 

  2. M. Rappaz, J.-M. Drezet, and M. Gremaud: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 449–455.

    CAS  Google Scholar 

  3. I. Farup and A. Mo: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 461–72.

    Google Scholar 

  4. Y.F. Guven and J.D. Hunt: Cast Met. 1998, vol. 1, pp. 104–11.

    Google Scholar 

  5. M. M’Hamdi, A. Mo, and C.L. Martin: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2081–93.

    Article  CAS  Google Scholar 

  6. J. Ni and C. Beckermann: Metall. Trans. B, 1991, vol. 22B, pp. 349–61.

    CAS  Google Scholar 

  7. C.L. Martin, M. Braccini, and M. Suéry: Mater. Sci. Eng. A, 2002, vol. A325, pp. 293–302.

    Google Scholar 

  8. C.L. Martin, O. Ludwig, and M. Suéry: Proc. World Congr. on Computational Mechanics V (2002), H.A. Mang, F.G. Rammerstorfer, and J. Eberhardsteiner, eds., Vienna University of Technology, Vienna, Austria, 2002.

    Google Scholar 

  9. P. Kolby, M. M’Hamdi, A. Mo, Ø. Nielsen, and P. Misic: AFS Trans, vol. 110, p. 2002.

  10. I. I. Novikov: Goryachelomkost Tsvetnykh Metallov i Splavov (Hot Tearing of Nonferrous Metals and Alloys), Nauka, Moscow, 1966.

    Google Scholar 

  11. D. Eskine, J. Zuidema, Jr., and L. Katgerman: Int. J. Cast Met. Res., 2002, vol. 14, pp. 217–24.

    CAS  Google Scholar 

  12. D.G. Eskin, Suyitno, J.F. Mooney, and L. Katgerman: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1325–35.

    CAS  Google Scholar 

  13. M. M’Hamdi, A. Pilipenko, and D. Eskin: AFS Trans., 2003, vol. 111, pp. 333–40.

    CAS  Google Scholar 

  14. C.L. Martin, D. Favier, and M. Suéry: Int. J. Plasticity, 1997, vol. 13 (3), pp. 215–35.

    Article  CAS  Google Scholar 

  15. M. Braccini: Ph.D. Thesis, Institut National Polytechnique de Grenoble, Grenoble, France, 2000.

    Google Scholar 

  16. M.C. Flemings: Metall. Trans. B, 1991, vol. 22B, pp. 269–93.

    CAS  Google Scholar 

  17. MARC Analysis Research Corporation, Palo Alto, CA.

  18. A.L. Dons, E.K. Jensen, Y. Langsrud, E. Trømborg, and S. Brusethang: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2135–46.

    Article  CAS  Google Scholar 

  19. M. Braccini, C.L. Martin, and M. Suéry: in Modeling of Casting, Welding and Advanced Solidification Processes IX, P.R. Sahm, P.N. Hansen, and J.G. Conley, eds., Shaker Verlag, Germany, 2000, pp 18–24.

    Google Scholar 

  20. MARC ® Volume A: Theory and User Information, Version 7.3, MARC Analysis Research Corporation. Palo Alto, CA, Aug. 1998.

  21. L. Arnberg, L. Bäckerud, and G. Chai: Solidification Characteristics of Aluminium Alloys, vol 3, Dendrite Coherency, AFS, Des Plaines, IL, 1996.

    Google Scholar 

  22. G. Chai: Ph.D. Thesis, Chem. Com. Nr 1, Stockholm University, Stockholm, 1994.

    Google Scholar 

  23. http://www.sintef.no/static/mt/norlight/, Mar. 5, 2004.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stangeland, A., MO, A., Nielsen, Ø. et al. Development of thermal strain in the coherent mushy zone during solidification of aluminum alloys. Metall Mater Trans A 35, 2903–2915 (2004). https://doi.org/10.1007/s11661-004-0238-x

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0238-x

Keywords

Navigation