Skip to main content
Log in

Multiscale structure and properties of cast and deformation processed polycrystalline NiTi shape-memory alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The objective of this study is to examine fundamental processing-structure-property relationships in polycrystalline NiTi bars. Three different polycrystalline Ti-50.9 at. pct Ni (Ti-55.7 wt pct Ni) materials were examined: (1) cast, (2) cast then hot rolled, and (3) cast, hot rolled, then cold drawn. The structure of the materials was investigated at various scales ranging from nanometers to micrometers. The cast materials contained random crystallographic textures along the loading axis of the extracted samples. The hot-rolled and cold-drawn materials contained a strong 〈111〉 texture parallel to the deformation-processing direction. The high-temperature hot-rolling process facilitated recrystallization and recovery, and curtailed precipitate formation, leaving the hot-rolled and cold-drawn materials in near solutionized states. The cold-drawn material contained a high density of dislocations and martensite. After a mild aging treatment, all three materials contained distributed coherent Ti3Ni4 precipitates on the order of 10 nm in size. The cast material was capable of full shape-memory transformation strain recovery up to approximately 5 pct strain at room temperature under both tension and compression. The hot-rolled and cold-drawn materials demonstrated significant tension-compression stress-strain asymmetry owing to their strong crystallographic texture. Under compression, the deformation-processed materials were only capable of 3 pct transformation strain recovery while under tension they were capable of nearly 7 pct transformation strain recovery. Based on the present results, the presence of small coherent Ti3Ni4 precipitates is determined to be the driving force for the favorable strain transformation strain recovery properties in all three materials, despite drastically different grain sizes and crystallographic textures. The unique dependence of elastic modulus on stress-state, temperature, and structure is also presented and discussed for the deformation-processed materials. In addition, we demonstrate that the appearance of a Lüders band transformation under tensile loading can be controlled by material structure. Specifically, the presence of significant martensite and dislocations in the cold-drawn materials was shown to mitigate the Lüders band propagation and result in a more gradual transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. DesRoches and M. Delemont: Eng. Struct., 2002, vol. 24, pp. 325–32.

    Article  Google Scholar 

  2. C.A. Rogers: J. Intelligent Mater. Systems Struct., 1995, vol. 6, pp. 4–12.

    Article  Google Scholar 

  3. Y. Liu, Z.L. Xie, J. Van Humbeeck, and L. Delaey: Acta Mater., 1999, vol. 47, pp. 645–60.

    Article  CAS  Google Scholar 

  4. S. Miyazaki, V.H. No, K. Kitamura, A. Khantachawana, and H. Hosoda: Int. J. Plasticity, 2000, vol. 16, pp. 1135–54.

    Article  CAS  Google Scholar 

  5. H. Sehitoglu, I. Karaman, R. Anderson, X. Zhang, K. Gall, H.J. Maier, and Y. Chumlyakov: Acta Mater., 2000, vol. 48, pp. 3311–26.

    Article  CAS  Google Scholar 

  6. J.M. Legresy, B. Prandi, and G.M. Raynaud: J. Phys. IV, 1991, vol. 1, pp. C4 241-C4 246.

    Google Scholar 

  7. D.N. Abujudom, P.E. Thoma, and S. Fariabi: Mater. Sci. Forum, 1990, vols. 56–58, pp. 565–70.

    Google Scholar 

  8. K. Johansen, H. Voggenreiter, and G. Eggeler: Mater. Sci. Eng., 1999, vols. A273-A275, pp. 410–14.

    Google Scholar 

  9. W. Tang, B. Sundman, R. Sandström, and C. Qiu: Acta Mater., 1999, vol. 47, pp. 3457–68.

    Article  CAS  Google Scholar 

  10. P. Filip and K. Mazanec: Scripta Metall. Mater., 1995, vol. 32, pp. 1375–80.

    Article  CAS  Google Scholar 

  11. T. Todoroki and H. Tamura: Trans. Jpn. Inst. Met., 1987, vol. 28, pp. 83–94.

    Google Scholar 

  12. D. Treppmann and E. Hornbogen: J. Phys. IV, 1997, vol. 7, pp. C5 211-C 220.

    Google Scholar 

  13. D. Treppmann and E. Hornbogen: J. Phys. IV, 1995, vol. 5, pp. C2 211-C 216.

    Google Scholar 

  14. P. Filip, J. Rusek, and K. Mazanec: Z. Metallkd., 1991, vol. 82, pp. 488–91.

    CAS  Google Scholar 

  15. H.C. Lin and S.K. Wu: Mater. Sci. Eng., 1992, vol. A158, pp. 87–91.

    CAS  Google Scholar 

  16. W. Siegert, K. Neuking, M. Mertmann, and G. Eggeler: Mater. Sci. Forum., 2002, vols. 394–395, pp. 361–64.

    Google Scholar 

  17. J.K. Allafi, A. Dlouhy, K. Neuking, and G. Eggeler: J. Phys. IV, 2001, vol. 11, pp. PR8 529-PR8 534.

    Google Scholar 

  18. K. Gall, T. Jesse Lim, D.L. McDowell, H. Sehitoglu, and Y.I. Chumlyakov: Int. J. Plasticity, 2000, vol. 16, pp. 1189–1214.

    Article  CAS  Google Scholar 

  19. I. Lee, A.K. Ghosh, R. Ray, and S. Jha: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2017–26.

    CAS  Google Scholar 

  20. K.J. Bowman, J. Jenny, and S. Kim: Mater. Sci. Eng., 1993, vol. A160, pp. 201–08.

    CAS  Google Scholar 

  21. D. Raabe and J. Keichel: J. Mater. Res., 1996, vol. 11, pp. 1694–1701.

    CAS  Google Scholar 

  22. W.Q. Yuan, and S.Q. Yang: J. Mater. Sci. Lett., 2002, vol. 21, pp. 443–45.

    Article  CAS  Google Scholar 

  23. K. Gall and H. Sehitoglu: Int. J. Plasticty, 1999, vol. 15, pp. 69–92.

    Article  CAS  Google Scholar 

  24. K. Gall, H. Sehitoglu, Y.I. Chumlyakov, and I.V. Kireeva: Acta Mater., 1999, vol. 47, pp. 1203–17.

    Article  CAS  Google Scholar 

  25. K. Gall, H. Sehitoglu, R. Anderson, I. Karaman, Y.I. Chumlyakov, and I.V. Kireeva: Mater. Sci. Eng., 2001, vol. A317, pp. 85–92.

    CAS  Google Scholar 

  26. L. Orgéas and D. Favier: Acta Mater., 1998, vol. 46, pp. 5579–91.

    Article  Google Scholar 

  27. L. Orgéas and D. Favier: J. Phys. IV, 1995, vol. 5, pp. C8 605-C8 610.

    Google Scholar 

  28. R. Plietsch and K. Ehrlich: Acta Mater., 1997, vol. 45, pp. 2417–24.

    Article  CAS  Google Scholar 

  29. T. Duerig, A. Pelton, and D. Stöckel: Mater. Sci. Eng., 1999, vol. A273–A275, pp. 149–60.

    Google Scholar 

  30. D. Treppmann, E. Hornbogen, and D. Wurzel: J. Phys. IV, 1995, vol. 5, pp. C8 569-C8 574.

    Google Scholar 

  31. P. Filip and K. Mazanec: Scripta Mater., 2001, vol. 45, pp. 701–07.

    Article  CAS  Google Scholar 

  32. J. Kim, Y. Liu, and S. Miyazaki: Acta Mater., 2004, vol. 52, pp. 487–99.

    Article  CAS  Google Scholar 

  33. S. Miyazaki, Y. Ohmi, K. Otsuka, and Y. Suzuki: J. Phys. IV, 1982, vol. 43, pp. C4 255-C4 260.

    Google Scholar 

  34. K. Gall and H.J. Maier: Acta Mater., 2002, vol. 50, pp. 4643–57.

    Article  CAS  Google Scholar 

  35. J.S. Kallend, U.F. Kocks, A.D. Rollett, and H.R. Wenk: Mater. Sci. Eng., 1991, vol. A132, pp. 1–11.

    Google Scholar 

  36. M. Kompatscher, B. Deme, G. Kostorz, C. Somsen, and E.F. Wassermann: Acta Mater., 2002, vol. 50, pp. 1581–86.

    Article  CAS  Google Scholar 

  37. C. Somsen: Ph.D. Thesis, University Duisburg, Shaker Verlag, Aachen, 2002.

    Google Scholar 

  38. E. Hornbogen: Mater. Sci. Eng., 1999, vols. A273–A275, pp. 630–33.

    Google Scholar 

  39. P.S. Khadkikar, G.M. Michal, and K. Vedula: Metall. Trans. A, 1990, vol. 21A, pp. 279–88.

    CAS  Google Scholar 

  40. S. Miyazaki, K. Ostsuka, and C.M. Wayman: Acta Mater., 1989, vol. 37, pp. 1873–84.

    Article  CAS  Google Scholar 

  41. S. Miyazaki, K. Ostsuka, and C.M. Wayman: Acta Mater., 1989, vol. 37, pp. 1885–90.

    Article  CAS  Google Scholar 

  42. J.R. Davis, D. Hodgson, M. Wu, and R. Biermann: ASM Handbook, 10th ed., ASM INTERNATIONAL, Materials Park, OH, 1990, vol. 2, p. 899.

    Google Scholar 

  43. J. Shaw and S. Kyriakides: Acta Mater., 1997, vol. 45, p. 683.

    Article  CAS  Google Scholar 

  44. A. Heckman and E. Hornbogen: Mater. Sci. Forum, 2002, vols. 394–395, pp. 325–28.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frick, C.P., Ortega, A.M., Tyber, J. et al. Multiscale structure and properties of cast and deformation processed polycrystalline NiTi shape-memory alloys. Metall Mater Trans A 35, 2013–2025 (2004). https://doi.org/10.1007/s11661-004-0150-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0150-4

Keywords

Navigation