Skip to main content
Log in

Characterization and modeling of quenching-induced residual stresses in the nickel-based superalloy IN718

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The residual stress fields in pieces of quenched IN718 superalloy have been characterized by neutron diffraction. The samples were in the form of cylindrical rods of length sufficient to ensure that steady-state conditions prevail at the midsection. Quenching the samples in air, water, and oil generated various residual stress fields. The interfacial heat-transfer coefficients were estimated using an inverse-modeling technique. The findings were rationalized with an elastic-plastic finite-element model that included temperature-dependent properties. The hoop and axial stresses are the most significant components of the stress field and arise from the plastic deformation occurring at the periphery of the cylindrical sections, the extent of which depends strongly upon the severity of the quench. The model is used to examine the residual stress fields to be expected in a turbine-disc forging of idealized geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G.E. Myers: Analytical Methods in Conduction Heat Transfer, McGraw-Hill, New York, NY, 1971.

    Google Scholar 

  2. Y. Nagasaka, J.K. Brimacombe, E.B. Hawbolt, I.V. Samarasekera, B. Hernandez-Morales, and S.E. Chidiac: Metall. Trans. A, 1993, vol. 24A, pp. 795–808.

    CAS  Google Scholar 

  3. S. Denis, S. Sjöström, and A. Simon: Metall. Trans. A, 1987, vol. 18A, pp. 1203–12.

    CAS  Google Scholar 

  4. B. Smoljan: J. Mater. Eng. Perf., 2002, vol. 11, pp. 75–79.

    CAS  Google Scholar 

  5. M.T. Todinov: Modell. Simul. Mater. Sci. Eng., 1999, vol. 7, pp. 25–41.

    Article  Google Scholar 

  6. Y.V.L.N. Murthy, G. Venkata Rao, and P. Krishna Iyer: Comput. Struct., 1996, vol. 60, pp. 131–54.

    Article  Google Scholar 

  7. G.A. Webster: Mater. Sci. Forum, 2000, vol. 347 (3), pp. 1–9.

    Google Scholar 

  8. G.A. Webster and A.N. Ezeilo: Int. J. Fatigue, 2001, vol. 23, pp. S375–83.

    Article  Google Scholar 

  9. M. de Oliveira, J. Ward, D.R. Garwood, and R.A. Wallis: J. Mater. Eng. Perf., 2002, vol. 11, pp. 80–85.

    Article  Google Scholar 

  10. C.A. Dandre, S.M. Roberts, R.W. Evans, and R.C. Reed: Mater. Sci. Technol., 2000, vol. 16, pp. 14–25.

    Article  CAS  Google Scholar 

  11. D. Dye, S.M. Roberts, P.J. Withers, and R.C. Reed: J. Strain Analysis, 2000, vol. 35, pp. 247–59.

    Article  Google Scholar 

  12. D. Dye, H.J. Stone, and R.C. Reed: Curr. Opin. Solid State Mater. Sci., 2001, vol. 5, pp. 31–37.

    Article  CAS  Google Scholar 

  13. ABAQUS/Standard User’s Manual, Hibbit, Karlsson and Sorensen, Inc., Pawtucket, RI, 1999.

  14. R.I. Ramakrishnan and T.E. Howson: J. Mater., 1992, vol. 44, pp. 29–32.

    CAS  Google Scholar 

  15. S.G. Chen, C.-I. Weng, and J. Lin: J. Mater. Proc. Technol., 1999, vol. 86, pp. 257–63.

    Article  Google Scholar 

  16. “High Temperature, High Strength Nickel-Base Alloys,” Technical Report, Nickel Development Institute, London, 1995.

  17. ASM Handbook, vol. 1, Properties and Selection: Irons, Steels, and High-Performance Alloys, 10th ed., ASM INTERNATIONAL, Materials Park, OH, 1990.

  18. J. Goldak, M. Bibby, J. Moore, R. House, and B. Patel: Metall. Trans. B, 1986, vol. 17B, pp. 587–600.

    Google Scholar 

  19. M.P. Jackson and R.C. Reed: Mater. Sci. Eng. A, 1999, vol. 259, pp. 85–97.

    Article  Google Scholar 

  20. F.P. Incropera and D.P. DeWitt: Fundamentals of Heat and Mass Transfer, 2nd ed., John Wiley & Sons, New York, NY, 1985.

    Google Scholar 

  21. S. Nukiyama: Int. J. Heat Mass Transfer, 1966, vol. 9, pp. 1419–33.

    Article  Google Scholar 

  22. P.J. Webster, G. Mills, X.D. Wang, W.P. Kang, and T.M. Holden: J. Neutron Res., 1996, vol. 3, pp. 223–40.

    CAS  Google Scholar 

  23. M.A.M. Bourke, P. Rangaswamy, T.M. Holden, and R. Leachman: Mater. Sci. Eng. A, 1998, vol. 257, pp. 333–40.

    Article  Google Scholar 

  24. ASM Handbook, vol. 4, Heat Treating, 10th ed., ASM INTERNATIONAL, Materials Park, OH, 1991, pp. 67–120.

  25. M. Hetènyi: Handbook of Experimental Stress Analysis, John Wiley, New York, NY, 1950.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dye, D., Conlon, K.T. & Reed, R.C. Characterization and modeling of quenching-induced residual stresses in the nickel-based superalloy IN718. Metall Mater Trans A 35, 1703–1713 (2004). https://doi.org/10.1007/s11661-004-0079-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-004-0079-7

Keywords

Navigation