Skip to main content
Log in

Deformation and strength behavior of two nickel-base turbine disk alloys at 650 °C

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Two powder metallurgy nickel-base turbine disk alloys, RENE’95* and KM4, were studied for strength and deformation behavior at 650 °C. Two classes of microstructures were investigated: unimodal size distributions of γ′ precipitates with particle sizes ranging from 0.1 to 0.7 µm and commercially heat-treated structures with bimodal or trimodal size distributions of γ′ precipitates. The strength and deformation mechanisms were heavily influenced by the microstructure. In both alloys, deformation during compression tests consisted of a combination of a/2〈110〉 antiphase boundary (APB)-connected dislocation pairs and a/3〈112〉 partials creating superlattice intrinsic stacking faults (SISFs). In unimodal alloys, the fault density increased with decreasing particle size and decreasing strain rate. These trends, observed in compression testing, are consistent with earlier studies of similar alloys, which were tested in creep. As the γ′ size was reduced, the nature of the faults changed from being isolated within single precipitates to being extended across entire grains. Commercially heat-treated alloys, containing a bimodal distribution of γ′ particles, exhibited significantly more faulting than unimodal alloys at the same cooling γ′ size. This augmentation of the faulting in commercial alloys was apparently due to the presence of the fine, aging γ′ particles. The two typical commercial heat treatments (supersolvus and subsolvus) resulted in different deformation structures: the subsolvus behavior was similar to that of unimodal alloys with γ′ sizes between 0.2 and 0.35 µm, while the supersolvus deformation was similar to that of unimodal alloys with the 0.1 µm γ′ size. These differences were attributed to differences in the size of the fine, aging γ′ particles. Creep deformation in a commercially heat-treated material at 650 °C occurred solely by SISF-related mechanisms, resulting in a macroscopic slip vector of 〈112〉. The effects of alloy chemistry, APB energy, and microstructure on the deformation and mechanical behavior are discussed in detail, and possible effects of the faulting mechanisms on the mechanical behavior are explored. Finally, models for yield strength as a function of microstructure for bimodal alloys with large volume fractions of precipitates are found to be in need of development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.D. Krueger, J.F. Wessels, and K-M. Chang: U.S. Patent 5,143,563, Sept. 1, 1992.

  2. E.S. Huron: GE Aircraft Engines, Evendale OH, private communication, 1996.

  3. I.M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids, 1961, vol. 19, pp. 35–50.

    Article  Google Scholar 

  4. C. Wagner: Z. Elektrochem., 1961, vol. 65, pp. 581–91.

    CAS  Google Scholar 

  5. A.J. Ardell: Proc. Int. Symp. on Mechanisms of Phase Transformations in Crystalline Solids, Institute of Metals Monograph and Report Series, 1968, pp. 111–16.

  6. R.A. MacKay and M.V. Nathal: Acta Metall. Mater., 1990, vol. 38, pp. 993–1005.

    Article  CAS  Google Scholar 

  7. H.A. Calderon, P.W. Voorhees, J.L. Murray, and G. Kostorz: Acta Metall. Mater., 1993, vol. 42, pp. 991–1000.

    Google Scholar 

  8. D.B. Williams and C.B. Carter: Transmission Electron Microscopy, Plenum Press, New York, NY, 1996, pp. 385–87.

    Google Scholar 

  9. A.J. Huis in’t Veld, G. Boom, P.M. Bronsveld, and J.T.M. de Hosson: Scripta Metall., 1985, vol. 19, pp. 1123–28.

    Article  Google Scholar 

  10. M. Condat and B. Décamps: Scripta Metall., 1987, vol. 21, pp. 607–12.

    Article  CAS  Google Scholar 

  11. P. Caron, T. Khan, and P. Veyssière: Phil. Mag. A, 1988, vol. 57, pp. 859–75.

    CAS  Google Scholar 

  12. R. Bonnet and A. Ati: Acta Metall., 1989, vol. 37, pp. 2153–69.

    Article  CAS  Google Scholar 

  13. P.R. Bhowal, E.F. Wright, and E.L. Raymond: Metall. Trans. A, 1990, vol. 21A, pp. 1709–17.

    CAS  Google Scholar 

  14. W.W. Milligan and S.D. Antolovich: Metall. Trans. A, 1991, vol. 22A, pp. 2309–18.

    CAS  Google Scholar 

  15. D. Mukherji, F. Jiao, W. Chen, and R.P. Wahi: Acta Metall., 1991, vol. 39, pp. 1515–24.

    Article  CAS  Google Scholar 

  16. T. Link and M. Feller-Kniepmeier: Metall. Trans. A, 1992, vol. 23A, pp. 99–105.

    CAS  Google Scholar 

  17. G.R. Leverant and B.H. Kear: Metall. Trans., 1970, vol. 1, pp. 491–98.

    CAS  Google Scholar 

  18. R.A. MacKay and R.D. Maier: Metall. Trans. A, 1982, vol. 13A, pp. 1747–54.

    Google Scholar 

  19. W.W. Milligan and S.D. Antolovich: Metall. Trans. A, 1989, vol. 20A, pp. 1888–89.

    CAS  Google Scholar 

  20. E. Nembach: Particle Strengthening of Metals and Alloys, Wiley and Sons, New York, NY, 1997.

    Google Scholar 

  21. S.M. Copley and B.H. Kear: Trans. TMS-AIME, 1967, vol. 239, pp. 984–92.

    CAS  Google Scholar 

  22. A.J. Ardell, V. Munjal, and D.J. Chellman: Metall. Trans. A, 1976, vol. 7A, pp. 1263–68.

    CAS  Google Scholar 

  23. B. Reppich: Acta Metall., 1982, vol. 30, pp. 87–94.

    Article  CAS  Google Scholar 

  24. B. Reppich, P. Schepp, and G. Wehner: Acta Metall., 1982, vol. 30, pp. 95–104.

    Article  CAS  Google Scholar 

  25. E. Nembach, S. Schänzer, W. Schröer, and K. Trinckauf: Acta Metall., 1988, vol. 36, pp. 1471–79.

    Article  CAS  Google Scholar 

  26. S. Schänzer and E. Nembach: Acta Metall. Mater., 1992, vol. 40, pp. 803–13.

    Article  Google Scholar 

  27. A. Nitz and E. Nembach: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 799–807.

    CAS  Google Scholar 

  28. A. Nitz and E. Nembach: Mater. Sci. Eng., 1999, vol. A263, pp. 15–22.

    CAS  Google Scholar 

  29. B. Reppich, W. Kuhlein, G. Meyer, D. Puppel, M. Schulz, and G. Schumann: Mater. Sci. Eng., 1986, vol. 83, pp. 45–63.

    Article  CAS  Google Scholar 

  30. D.J. Chellman, A.J. Luévano, and A.J. Ardell: Proc. 9th Int. Conf. on the Strength of Metals and Alloys, D.G. Brandon, R. Chaim, and A. Rosen, eds., Freund Publishing House, London, 1991, vol. 1, p. 537.

    Google Scholar 

  31. R.N. Jarrett and J.K. Tien: Metall. Trans. A, 1982, vol. 13A, pp. 1021–32.

    CAS  Google Scholar 

  32. J.P. Collier, P.W. Keefe, and J.K. Tien: Metall. Trans. A, 1986, vol. 17A, pp. 651–61.

    CAS  Google Scholar 

  33. B.H. Kear and D.P. Pope: Refractory Alloying Elements in Superalloys, J.K. Tien and S. Reichman, eds., ASM, Metals Park, OH, 1984, pp. 135–51.

    Google Scholar 

  34. L.R. Curwick: Ph.D. Thesis, University of Minnesota, Minneapolis, MN, 1972.

    Google Scholar 

  35. K. Suzuki, M. Ichihara, and S. Takeuchi: Acta Metall., 1979, vol. 27, pp. 193–200.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

RENE′95 is a trademark of General Electric Company, Fairfield, CT.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinharoy, S., Virro-Nic, P. & Milligan, W.W. Deformation and strength behavior of two nickel-base turbine disk alloys at 650 °C. Metall Mater Trans A 32, 2021–2032 (2001). https://doi.org/10.1007/s11661-001-0014-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0014-0

Keywords

Navigation