Skip to main content

Advertisement

Log in

Risk factors for the comorbidity of osteoporosis/osteopenia and kidney stones: a cross-sectional study

  • Original Article
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Summary

Low femoral neck bone mineral density (BMD) was associated with the increased risk of kidney stones. Low dietary magnesium intake and increased serum alkaline phosphatase were associated with the increased risk of low femoral neck BMD in kidney stone formers.

Purpose

To evaluate whether low femoral neck bone mineral density (BMD) was associated with a higher risk of kidney stones, and identify risk factors for the comorbidity of osteoporosis/osteopenia and kidney stones.

Methods

We analyzed individuals aged ≥ 20 years from National Health and Nutrition Examination Survey 2007–2020 data. Osteoporosis/osteopenia is defined as any T-score < −1.0 of femoral neck, total femoral, and mean lumbar spine (L1–L4) BMD. Dietary intakes (sodium, potassium, magnesium, calcium, phosphorus, calcium/phosphorus, vitamin D (25OHD2+25OHD3)) and serum parameters (sodium, potassium, calcium, phosphorus, bicarbonate, vitamin D, alkaline phosphatase (ALP)) were screened for identifying risk factors for the comorbidity.

Results

The prevalence of comorbidity of osteoporosis/osteopenia and kidney stones was 4.82%. Femoral neck BMD T-score was negatively associated with the prevalence of kidney stones (n=11,864). Dietary magnesium intake, serum phosphorus, and bicarbonate were negatively associated with the comorbidity prevalence, and serum ALP was positively associated with the comorbidity prevalence (n=6978). Additionally, there remain significant associations of dietary magnesium intake, serum ALP, and bicarbonate with not only femoral neck BMD T-score (n=11331), but also the prevalence of kidney stones (n=23,111) in general population. Furthermore, dietary magnesium intake was positively correlated to femoral neck BMD T-score in stone formers (SFs), while serum ALP was negatively correlated to femoral neck BMD T-score in SFs (n=1163).

Conclusion

Low femoral neck BMD was closely associated with an increased risk of kidney stones. Low magnesium intake and increased serum ALP were associated with the increased risk of the comorbidity, as well as indicative of low femoral neck BMD T-score in SFs, which offered a clue to further clarify the mechanism leading to paradoxical calcification of bone resorption and kidney stones, and had the potential to perform personalized diagnostic workup for low BMD in SFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All raw data are available on the NHANES and CDC website.

References

  1. Sorokin I, Mamoulakis C, Miyazawa K, Rodgers A, Talati J, Lotan Y (2017) Epidemiology of stone disease across the world. World J Urol 35(9):1301–20

    PubMed  Google Scholar 

  2. Gambaro G, Croppi E, Coe F, Lingeman J, Moe O, Worcester E et al (2016) Metabolic diagnosis and medical prevention of calcium nephrolithiasis and its systemic manifestations: a consensus statement. J Nephrol. 29(6):715–34

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lucato P, Trevisan C, Stubbs B, Zanforlini BM, Solmi M, Luchini C et al (2016) Nephrolithiasis, bone mineral density, osteoporosis, and fractures: a systematic review and comparative meta-analysis. Osteoporos Int 27(11):3155–64

    CAS  PubMed  Google Scholar 

  4. Dhayat NA, Schneider L, Popp AW, Lüthi D, Mattmann C, Vogt B et al (2022) Predictors of bone mineral density in kidney stone formers. Kidney Int Rep 7(3):558–67

    PubMed  Google Scholar 

  5. Caudarella R, Vescini F, Buffa A, Sinicropi G, Rizzoli E, La Manna G et al (2003) Bone mass loss in calcium stone disease: focus on hypercalciuria and metabolic factors. J Nephrol 16(2):260–6

    CAS  PubMed  Google Scholar 

  6. Arrabal-Polo MA, Arias-Santiago S, de Haro-Muñoz T, Lopez-Ruiz A, Orgaz-Molina J, Gonzalez-Torres S et al (2013) Effects of aminobisphosphonates and thiazides in patients with osteopenia/osteoporosis, hypercalciuria, and recurring renal calcium lithiasis. Urology 81(4):731–7

    PubMed  Google Scholar 

  7. Alshara L, Batagello CA, Armanyous S, Gao T, Patel N, Remer EM et al (2018) The impact of thiazides and potassium citrate on bone mineral density evaluated by CT scan in stone formers. J Endourol 32(6):559–64

    PubMed  Google Scholar 

  8. Taylor EN, Feskanich D, Paik JM, Curhan GC (2016) Nephrolithiasis and risk of incident bone fracture. J Urol 195(5):1482–6

    PubMed  Google Scholar 

  9. Sakhaee K, Maalouf NM, Poindexter J, Adams-Huet B, Moe OW (2017) Relationship between urinary calcium and bone mineral density in patients with alcium nephrolithiasis. J Urol 197(6):1472–7

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Shavit L, Girfoglio D, Vijay V, Goldsmith D, Ferraro PM, Moochhala SH et al (2015) Vascular calcification and bone mineral density in recurrent kidney stone formers. Clin J Am Soc Nephrol. 10(2):278–85

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Letavernier E, Traxer O, Daudon M, Tligui M, Hubert-Brierre J, Guerrot D et al (2011) Determinants of osteopenia in male renal-stone-disease patients with idiopathic hypercalciuria. Clin J Am Soc Nephrol. 6(5):1149–54

    PubMed  PubMed Central  Google Scholar 

  12. Arrabal-Polo MA, Arrabal-Martin M, de Haro-Munoz T, Lopez-Leon VM, Merino-Salas S, Ochoa-Hortal MA et al (2011) Mineral density and bone remodelling markers in patients with calcium lithiasis. BJU Int 108(11):1903–8

    CAS  PubMed  Google Scholar 

  13. Liu M, Cui Z, Chen J, Gao M, Zhu Z, Chen H (2022) Dietary selenium intake and the risk of kidney stones in adults, an analysis of 2007–2018 National Health and Nutrition Examination Survey, a cross-sectional study. Front Nutr 9:877917

    PubMed  PubMed Central  Google Scholar 

  14. Curhan GC, Willett WC, Rimm EB, Stampfer MJ (1993) A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. New Engl J Med 328(12):833–8

    CAS  PubMed  Google Scholar 

  15. Curhan GC, Willett WC, Speizer FE, Spiegelman D, Stampfer MJ (1997) Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann Intern Med 126(7):497–504

    CAS  PubMed  Google Scholar 

  16. Looker AC, Orwoll ES, Johnston CC Jr, Lindsay RL, Wahner HW, Dunn WL et al (1997) Prevalence of low femoral bone density in older U.S. adults from NHANES III. J Bone Miner Res 12(11):1761–1768

  17. Looker AC, Borrud LG, Hughes JP, Fan B, Shepherd JA, Melton LJ 3rd (2012) Lumbar spine and proximal femur bone mineral density, bone mineral content, and bone area: United States, 2005–2008. Vital Health Stat 11(251):1–132

  18. Tang Y, Peng B, Liu J, Liu Z, Xia Y, Geng B (2022) Systemic immune-inflammation index and bone mineral density in postmenopausal women: a cross-sectional study of the national health and nutrition examination survey (NHANES) 2007–2018. Front Immunol 13:975400

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao S, Qian X, Huang S, Deng W, Li Z, Hu Y (2022) Association between macronutrients intake distribution and bone mineral density. Clin Nutr 41(8):1689–96

    CAS  PubMed  Google Scholar 

  20. Movassagh EZ, Vatanparast H (2017) Current evidence on the association of dietary patterns and bone health: a scoping review. Adv Nutr 8(1):1–16

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Siener R (2021) Nutrition and kidney stone disease. Nutrients 13(6):1917

  22. Nakamura K, Ueno K, Nishiwaki T, Saito T, Tsuchiya Y, Yamamoto M (2007) Magnesium intake and bone mineral density in young adult women. Magnes Res 20(4):250–3

    CAS  PubMed  Google Scholar 

  23. Gou GH, Tseng FJ, Wang SH, Chen PJ, Shyu JF, Pan RY (2019) Nutritional factors associated with femoral neck bone mineral density in children and adolescents. BMC Musculoskelet Disord 20(1):520

    PubMed  PubMed Central  Google Scholar 

  24. Ryder KM, Shorr RI, Bush AJ, Kritchevsky SB, Harris T, Stone K et al (2005) Magnesium intake from food and supplements is associated with bone mineral density in healthy older white subjects. J Am Geriatr Soc 53(11):1875–80

    PubMed  Google Scholar 

  25. Sun W, Zhang G, Tan L, Yang K, Ai H (2016) The fluoride coated AZ31B magnesium alloy improves corrosion resistance and stimulates bone formation in rabbit model. Mater Sci Eng C Mater Biol Appl 63:506–11

    CAS  PubMed  Google Scholar 

  26. Guo Y, Ren L, Liu C, Yuan Y, Lin X, Tan L et al (2013) Effect of implantation of biodegradable magnesium alloy on BMP-2 expression in bone of ovariectomized osteoporosis rats. Mater Sci Eng C Mater Biol Appl 33(7):4470–4

    CAS  PubMed  Google Scholar 

  27. Sahin E, Orhan C, Balci TA, Erten F, Sahin K (2021) Magnesium picolinate improves bone formation by regulation of RANK/RANKL/OPG and BMP-2/Runx2 signaling pathways in high-fat fed rats. Nutrients 13(10):3353

  28. de Baaij JH, Hoenderop JG, Bindels RJ (2015) Magnesium in man: implications for health and disease. Physiol Rev 95(1):1–46

    PubMed  Google Scholar 

  29. Turney BW, Appleby PN, Reynard JM, Noble JG, Key TJ, Allen NE (2014) Diet and risk of kidney stones in the Oxford cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC). Eur J Epidemiol 29(5):363–9

    CAS  PubMed  Google Scholar 

  30. Taylor EN, Stampfer MJ, Curhan GC (2004) Dietary factors and the risk of incident kidney stones in men: new insights after 14 years of follow-up. J Amer Soc Nephrol JASN 15(12):3225–32

    Google Scholar 

  31. Tiselius HG (2003) Epidemiology and medical management of stone disease. BJU international 91(8):758–67

    PubMed  Google Scholar 

  32. Kohri K, Garside J, Blacklock NJ (1988) The role of magnesium in calcium oxalate urolithiasis. Br J Urol 61(2):107–15

    CAS  PubMed  Google Scholar 

  33. Xue G, Liu R (2022) Association between dietary selenium intake and bone mineral density in the US general population. Ann Trans Med 10(16):869

    Google Scholar 

  34. Vimalraj S (2020) Alkaline phosphatase: structure, expression and its function in bone mineralization. Gene. 754:144855

    CAS  PubMed  Google Scholar 

  35. Glover SJ, Gall M, Schoenborn-Kellenberger O, Wagener M, Garnero P, Boonen S et al (2009) Establishing a reference interval for bone turnover markers in 637 healthy, young, premenopausal women from the United Kingdom, France, Belgium, and the United States. J Bone Miner Res 24(3):389–97

    PubMed  Google Scholar 

  36. Chen WC, Chou WH, Chu HW, Huang CC, Liu X, Chang WP et al (2019) The rs1256328 (ALPL) and rs12654812 (RGS14) polymorphisms are associated with susceptibility to calcium nephrolithiasis in a Taiwanese population. Sci Rep 9(1):17296

    PubMed  PubMed Central  Google Scholar 

  37. Palsson R, Indridason OS, Edvardsson VO, Oddsson A (2019) Genetics of common complex kidney stone disease: insights from genome-wide association studies. Urolithiasis 47(1):11–21

    PubMed  Google Scholar 

  38. Khan SR, Canales BK, Dominguez-Gutierrez PR (2021) Randall’s plaque and calcium oxalate stone formation: role for immunity and inflammation. Nat Rev Nephrol 17(6):417–433

  39. Gay C, Letavernier E, Verpont MC, Walls M, Bazin D, Daudon M et al (2020) Nanoscale analysis of Randall’s plaques by electron energy loss spectromicroscopy: insight in early biomineral formation in human kidney. ACS Nano. 14(2):1823–36

    CAS  PubMed  Google Scholar 

  40. Khan SR, Gambaro G (2016) Role of osteogenesis in the formation of Randall’s plaques. Anat Rec 299(1):5–7

    Google Scholar 

  41. Zhu Z, Huang F, Xia W, Zeng H, Gao M, Li Y et al (2020) Osteogenic differentiation of renal interstitial fibroblasts promoted by lncRNA MALAT1 may partially contribute to Randall’s plaque formation. Front Cell Dev Biol 8:596363

    PubMed  Google Scholar 

  42. Chen W, Melamed ML, Abramowitz MK (2015) Serum bicarbonate and bone mineral density in US adults. Am J Kidney Dis 65(2):240–8

    CAS  PubMed  Google Scholar 

  43. Jehle S, Hulter HN, Krapf R (2013) Effect of potassium citrate on bone density, microarchitecture, and fracture risk in healthy older adults without osteoporosis: a randomized controlled trial. J Clin Endocrinol Metab 98(1):207–17

    CAS  PubMed  Google Scholar 

  44. Jehle S, Zanetti A, Muser J, Hulter HN, Krapf R (2006) Partial neutralization of the acidogenic Western diet with potassium citrate increases bone mass in postmenopausal women with osteopenia. J Amer Soc Nephrol JASN 17(11):3213–22

    CAS  Google Scholar 

  45. Ilzkovitz M, Kayembe EE, Geers C, Pozdzik A (2022) Kidney stones, proteinuria and renal tubular metabolic acidosis: what is the link?. Healthcare(Basel) 10(5):836

  46. Serna J, Bergwitz C (2020) Importance of dietary phosphorus for bone metabolism and healthy aging. Nutrients 12(10):3001

  47. Chande S, Bergwitz C (2018) Role of phosphate sensing in bone and mineral metabolism. Nat Rev Endocrinol 14(11):637–55

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bergwitz C, Jüppner H (2010) Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Ann Rev Med 61:91–104

    CAS  PubMed  Google Scholar 

  49. Gattineni J, Friedman PA (2015) Regulation of hormone-sensitive renal phosphate transport. Vitam Horm 98:249–306

    CAS  PubMed  Google Scholar 

  50. Bergwitz C, Miyamoto KI (2019) Hereditary hypophosphatemic rickets with hypercalciuria: pathophysiology, clinical presentation, diagnosis and therapy. Pflugers Archiv: Europ J Physiol 471(1):149–63

    CAS  Google Scholar 

  51. Bergwitz C, Jüppner H (2012) FGF23 and syndromes of abnormal renal phosphate handling. Adv Exp Med Biol 728:41–64

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Central South University Independent Exploration and Innovation Project for Graduate Students (2021zzts0348 to Zewu Zhu) and Graduate Innovation Project of Hunan Province (CX20210358 to Zewu Zhu).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Z. Z. and M. W.; data curation: Z. Z., M. L., Y. Z., J. W., and M. G.; methodology: Z. Z. and M. W.; project administration: H. C. and M. W.; software: Z. Z., M. L., T. L., and F. H.; validation: Z. Z., M. L., T. L., and F. H.; writing—original draft: Z. Z.; writing—review and editing: H. C. and M. W.

Corresponding author

Correspondence to Maolan Wu.

Ethics declarations

Ethics approval

The survey protocol was approved by National Center for Health Statistics Ethics Review Board, and written informed consent was obtained from all participants.

Conflicts of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Liu, M., Zhang, Y. et al. Risk factors for the comorbidity of osteoporosis/osteopenia and kidney stones: a cross-sectional study. Arch Osteoporos 18, 128 (2023). https://doi.org/10.1007/s11657-023-01338-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-023-01338-3

Keywords

Navigation