Skip to main content

Advertisement

Log in

People with HIV infection had lower bone mineral density and increased fracture risk: a meta-analysis

  • Review
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Summary

A meta-analysis to investigate the difference in fracture risk between individuals with and without HIV infection was performed. People living with HIV had lower bone mineral density (BMD) and greater risks of overall fractures and fragility fractures. Reducing fragility and maintaining skeletal strength for PLWH are urgently needed for this population.

Purpose

The introduction of effective antiretroviral therapy increased the life expectancy of people living with HIV (PLWH). This population now faces problems related to aging such as decreased bone mineral density (BMD) and increased fracture risk. Some antiretroviral therapies may also negatively impact bone health. We performed a meta-analysis to investigate the difference in the fracture risk between individuals with and without HIV infection.

Methods

We compared BMD, risk of fragility fracture, and risk of all fracture between the two groups. This study included 35 articles with 106,994 PLWH and 228,794,335 controls.

Results

PLWH had lower lumbar spine and hip BMD than controls. PLWH had a higher prevalence of all fracture events (4.08% versus 0.44%) and fragility fractures (2.66% versus 2.19%). The relative risks of all and fragility fractures of PLWH were 1.91 (95% confidence interval (CI), 1.46–2.49; p < 0.001) and 1.68 (95% CI: 1.40–2.01; p < 0.001). PLWH also had more vertebral fractures (1.26% versus 0.37%; RR, 1.97; 95% CI: 1.22–3.2; p < 0.05), hip fractures (1.38% versus 0.81%; RR, 1.88; 95% CI: 0.99–3.57; p = 0.05), and wrist fractures (1.38% versus 1.29%; RR, 1.67; 95% CI: 1.13–2.45; p < 0.05) than healthy controls. The pooled incidence of fractures was 1.72 per 100 person-years in PLWH and 1.29 in healthy controls.

Conclusion

PLWH had lower BMD and greater risks of all fractures and fragility fractures. Reducing fragility and maintaining skeletal strength for PLWH are urgently needed for this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Harrison KM, Song R, Zhang X (2010) Life expectancy after HIV diagnosis based on national HIV surveillance data from 25 states, United States. J Acquir Immune Defic Syndr 53(1):124–130. https://doi.org/10.1097/QAI.0b013e3181b563e7

    Article  PubMed  Google Scholar 

  2. van Sighem AI, Gras LA, Reiss P, Brinkman K, de Wolf F, study Anoc (2010) Life expectancy of recently diagnosed asymptomatic HIV-infected patients approaches that of uninfected individuals. AIDS 24(10):1527–1535. https://doi.org/10.1097/QAD.0b013e32833a3946

    Article  PubMed  Google Scholar 

  3. Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int 4(6):368–381

    Article  CAS  PubMed  Google Scholar 

  4. Amiel C, Ostertag A, Slama L, Baudoin C, N’Guyen T, Lajeunie E, Neit-Ngeilh L, Rozenbaum W, De Vernejoul MC (2004) BMD is reduced in HIV-infected men irrespective of treatment. J Bone Miner Res 19(3):402–409. https://doi.org/10.1359/JBMR.0301246

    Article  CAS  PubMed  Google Scholar 

  5. Arnsten JH, Freeman R, Howard AA, Floris-Moore M, Lo Y, Klein RS (2007) Decreased bone mineral density and increased fracture risk in aging men with or at risk for HIV infection. AIDS 21(5):617–623. https://doi.org/10.1097/QAD.0b013e3280148c05

    Article  PubMed  Google Scholar 

  6. Yin M, Dobkin J, Brudney K, Becker C, Zadel JL, Manandhar M, Addesso V, Shane E (2005) Bone mass and mineral metabolism in HIV+ postmenopausal women. Osteoporos Int 16(11):1345–1352. https://doi.org/10.1007/s00198-005-1845-0

    Article  PubMed  PubMed Central  Google Scholar 

  7. Brown TT, Qaqish RB (2006) Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS 20(17):2165–2174. https://doi.org/10.1097/QAD.0b013e32801022eb

    Article  PubMed  Google Scholar 

  8. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097

    Article  PubMed  PubMed Central  Google Scholar 

  9. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP, Initiative S (2014) The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Int J Surg 12(12):1495–1499. https://doi.org/10.1016/j.ijsu.2014.07.013

    Article  Google Scholar 

  10. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560. https://doi.org/10.1136/bmj.327.7414.557

    Article  PubMed  PubMed Central  Google Scholar 

  11. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558. https://doi.org/10.1002/sim.1186

    Article  PubMed  Google Scholar 

  12. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188

    Article  CAS  PubMed  Google Scholar 

  13. Lau J, Ioannidis JP, Schmid CH (1997) Quantitative synthesis in systematic reviews. Ann Intern Med 127(9):820–826

    Article  CAS  PubMed  Google Scholar 

  14. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tebas P, Powderly WG, Claxton S, Marin D, Tantisiriwat W, Teitelbaum SL, Yarasheski KE (2000) Accelerated bone mineral loss in HIV-infected patients receiving potent antiretroviral therapy. AIDS 14(4):F63–F67. https://doi.org/10.1097/00002030-200003100-00005

    Article  CAS  PubMed  Google Scholar 

  16. Knobel H, Guelar A, Vallecillo G, Nogues X, Diez A (2001) Osteopenia in HIV-infected patients: is it the disease or is it the treatment? AIDS 15(6):807–808. https://doi.org/10.1097/00002030-200104130-00022

    Article  CAS  PubMed  Google Scholar 

  17. Huang JS, Mulkern RV, Grinspoon S (2002) Reduced intravertebral bone marrow fat in HIV-infected men. AIDS 16(9):1265–1269. https://doi.org/10.1097/00002030-200206140-00009

    Article  PubMed  Google Scholar 

  18. Loiseau-Peres S, Delaunay C, Poupon S, Lespessailles E, Ballouche N, Arsac P, Benhamou CL (2002) Osteopenia in patients infected by the human immunodeficiency virus. A case control study. Joint Bone Spine 69(5):482–485. https://doi.org/10.1016/s1297-319x(02)00433-5

    Article  CAS  PubMed  Google Scholar 

  19. Bruera D, Luna N, David DO, Bergoglio LM, Zamudio J (2003) Decreased bone mineral density in HIV-infected patients is independent of antiretroviral therapy. AIDS 17(13):1917–1923. https://doi.org/10.1097/00002030-200309050-00010

    Article  PubMed  Google Scholar 

  20. Dolan SE, Huang JS, Killilea KM, Sullivan MP, Aliabadi N, Grinspoon S (2004) Reduced bone density in HIV-infected women. AIDS 18(3):475–483. https://doi.org/10.1097/00002030-200402200-00014

    Article  PubMed  Google Scholar 

  21. Bolland MJ, Grey AB, Horne AM, Briggs SE, Thomas MG, Ellis-Pegler RB, Woodhouse AF, Gamble GD, Reid IR (2006) Bone mineral density is not reduced in HIV-infected Caucasian men treated with highly active antiretroviral therapy. Clin Endocrinol 65(2):191–197. https://doi.org/10.1111/j.1365-2265.2006.02572.x

    Article  Google Scholar 

  22. Arnsten JH, Freeman R, Howard AA, Floris-Moore M, Santoro N, Schoenbaum EE (2006) HIV infection and bone mineral density in middle-aged women. Clin Infect Dis 42(7):1014–1020. https://doi.org/10.1086/501015

    Article  CAS  PubMed  Google Scholar 

  23. Teichmann J, Lange U, Discher T, Lohmeyer J, Stracke H, Bretzel RG (2009) Bone mineral density in human immunodeficiency virus-1 infected men with hypogonadism prior to highly-active-antiretroviral-therapy (HAART). Eur J Med Res 14:59–64. https://doi.org/10.1186/2047-783x-14-2-59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yin MT, McMahon DJ, Ferris DC, Zhang CA, Shu A, Staron R, Colon I, Laurence J, Dobkin JF, Hammer SM, Shane E (2010) Low bone mass and high bone turnover in postmenopausal human immunodeficiency virus-infected women. J Clin Endocrinol Metab 95(2):620–629. https://doi.org/10.1210/jc.2009-0708

    Article  CAS  PubMed  Google Scholar 

  25. Yin MT, Lu D, Cremers S, Tien PC, Cohen MH, Shi Q, Shane E, Golub ET, Anastos K (2010) Short-term bone loss in HIV-infected premenopausal women. J Acquir Immune Defic Syndr 53(2):202–208. https://doi.org/10.1097/QAI.0b013e3181bf6471

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sharma A, Flom PL, Weedon J, Klein RS (2010) Prospective study of bone mineral density changes in aging men with or at risk for HIV infection. AIDS 24(15):2337–2345. https://doi.org/10.1097/QAD.0b013e32833d7da7

    Article  PubMed  Google Scholar 

  27. Badie BM, Soori T, Kheirandish P, Izadyar S, SeyedAlinagh S, Foroughi M, Rostamian A, Mohraz M (2011) Evaluation of bone mineral density in Iranian HIV/AIDS patients. Acta Med Iran 49(7):460–467

    PubMed  Google Scholar 

  28. Mulligan K, Harris DR, Emmanuel P, Fielding RA, Worrell C, Kapogiannis BG, Monte D, Sleasman J, Wilson CM, Aldrovandi GM, team ATNP (2012) Low bone mass in behaviorally HIV-infected young men on antiretroviral therapy: Adolescent Trials Network Study 021B. Clin Infect Dis 55(3):461–468. https://doi.org/10.1093/cid/cis455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grijsen ML, Vrouenraets SM, Wit FW, Stolte IG, Prins M, Lips P, Reiss P, Prins JM (2013) Low bone mineral density, regardless of HIV status, in men who have sex with men. J Infect Dis 207(3):386–391. https://doi.org/10.1093/infdis/jis687

    Article  PubMed  Google Scholar 

  30. Negredo E, Domingo P, Ferrer E, Estrada V, Curran A, Navarro A, Isernia V, Rosales J, Perez-Alvarez N, Puig J, Bonjoch A, Echeverria P, Podzamczer D, Clotet B (2014) Peak bone mass in young HIV-infected patients compared with healthy controls. J Acquir Immune Defic Syndr 65(2):207–212. https://doi.org/10.1097/01.qai.0000435598.20104.d6

    Article  PubMed  Google Scholar 

  31. Prior J, Burdge D, Maan E, Milner R, Hankins C, Klein M, Walmsley S (2007) Fragility fractures and bone mineral density in HIV positive women: a case-control population-based study. Osteoporos Int 18(10):1345–1353. https://doi.org/10.1007/s00198-007-0428-7

    Article  CAS  PubMed  Google Scholar 

  32. Triant VA, Brown TT, Lee H, Grinspoon SK (2008) Fracture prevalence among human immunodeficiency virus (HIV)-infected versus non-HIV-infected patients in a large U.S. healthcare system. J Clin Endocrinol Metab 93(9):3499–3504. https://doi.org/10.1210/jc.2008-0828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yin MT, Shi Q, Hoover DR, Anastos K, Sharma A, Young M, Levine A, Cohen MH, Shane E, Golub ET, Tien PC (2010) Fracture incidence in HIV-infected women: results from the Women’s Interagency HIV Study. AIDS 24(17):2679–2686. https://doi.org/10.1097/QAD.0b013e32833f6294

    Article  PubMed  Google Scholar 

  34. Guaraldi G, Orlando G, Zona S, Menozzi M, Carli F, Garlassi E, Berti A, Rossi E, Roverato A, Palella F (2011) Premature age-related comorbidities among HIV-infected persons compared with the general population. Clin Infect Dis 53(11):1120–1126. https://doi.org/10.1093/cid/cir627

    Article  PubMed  Google Scholar 

  35. Young B, Dao CN, Buchacz K, Baker R, Brooks JT, Investigators HIVOS (2011) Increased rates of bone fracture among HIV-infected persons in the HIV Outpatient Study (HOPS) compared with the US general population, 2000-2006. Clin Infect Dis 52(8):1061–1068. https://doi.org/10.1093/cid/ciq242

    Article  PubMed  Google Scholar 

  36. Womack JA, Goulet JL, Gibert C, Brandt C, Chang CC, Gulanski B, Fraenkel L, Mattocks K, Rimland D, Rodriguez-Barradas MC, Tate J, Yin MT, Justice AC, Veterans Aging Cohort Study Project T (2011) Increased risk of fragility fractures among HIV infected compared to uninfected male veterans. PLoS One 6(2):e17217. https://doi.org/10.1371/journal.pone.0017217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hansen AB, Gerstoft J, Kronborg G, Larsen CS, Pedersen C, Pedersen G, Obel N (2012) Incidence of low and high-energy fractures in persons with and without HIV infection: a Danish population-based cohort study. AIDS 26(3):285–293. https://doi.org/10.1097/QAD.0b013e32834ed8a7

    Article  PubMed  Google Scholar 

  38. Torti C, Mazziotti G, Soldini PA, Foca E, Maroldi R, Gotti D, Carosi G, Giustina A (2012) High prevalence of radiological vertebral fractures in HIV-infected males. Endocrine 41(3):512–517. https://doi.org/10.1007/s12020-011-9586-7

    Article  CAS  PubMed  Google Scholar 

  39. Pepe J, Isidori AM, Falciano M, Iaiani G, Salotti A, Diacinti D, Del Fiacco R, Sbardella E, Cipriani C, Piemonte S, Romagnoli E, Lenzi A, Minisola S (2012) The combination of FRAX and Ageing Male Symptoms scale better identifies treated HIV males at risk for major fracture. Clin Endocrinol 77(5):672–678. https://doi.org/10.1111/j.1365-2265.2012.04452.x

    Article  Google Scholar 

  40. Lo Re V 3rd, Volk J, Newcomb CW, Yang YX, Freeman CP, Hennessy S, Kostman JR, Tebas P, Leonard MB, Localio AR (2012) Risk of hip fracture associated with hepatitis C virus infection and hepatitis C/human immunodeficiency virus coinfection. Hepatology 56(5):1688–1698. https://doi.org/10.1002/hep.25866

    Article  PubMed  Google Scholar 

  41. Peters BS, Perry M, Wierzbicki AS, Wolber LE, Blake GM, Patel N, Hoile R, Duncan A, Kulasegaram R, Williams FM (2013) A cross-sectional randomised study of fracture risk in people with HIV infection in the probono 1 study. PLoS One 8(10):e78048. https://doi.org/10.1371/journal.pone.0078048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guerri-Fernandez R, Vestergaard P, Carbonell C, Knobel H, Aviles FF, Castro AS, Nogues X, Prieto-Alhambra D, Diez-Perez A (2013) HIV infection is strongly associated with hip fracture risk, independently of age, gender, and comorbidities: a population-based cohort study. J Bone Miner Res 28(6):1259–1263. https://doi.org/10.1002/jbmr.1874

    Article  PubMed  Google Scholar 

  43. Prieto-Alhambra D, Guerri-Fernandez R, De Vries F, Lalmohamed A, Bazelier M, Starup-Linde J, Diez-Perez A, Cooper C, Vestergaard P (2014) HIV infection and its association with an excess risk of clinical fractures: a nationwide case-control study. J Acquir Immune Defic Syndr 66(1):90–95. https://doi.org/10.1097/QAI.0000000000000112

    Article  PubMed  Google Scholar 

  44. Sharma A, Shi Q, Hoover DR, Anastos K, Tien PC, Young MA, Cohen MH, Golub ET, Gustafson D, Yin MT (2015) Increased fracture incidence in middle-aged HIV-infected and HIV-uninfected women: updated results from the Women’s Interagency HIV Study. J Acquir Immune Defic Syndr 70(1):54–61. https://doi.org/10.1097/QAI.0000000000000674

    Article  PubMed  PubMed Central  Google Scholar 

  45. Guerri-Fernandez R, Molina D, Villar-Garcia J, Prieto-Alhambra D, Mellibovsky L, Nogues X, Gonzalez-Mena A, Guelar A, Trenchs-Rodriguez M, Herrera-Fernandez S, Horcajada JP, Diez-Perez A, Knobel H (2016) Brief report: HIV infection is associated with worse bone material properties, independently of bone mineral density. J Acquir Immune Defic Syndr 72(3):314–318. https://doi.org/10.1097/QAI.0000000000000965

    Article  PubMed  Google Scholar 

  46. Gonciulea A, Wang R, Althoff KN, Palella FJ, Lake J, Kingsley LA, Brown TT (2017) An increased rate of fracture occurs a decade earlier in HIV+ compared with HIV- men. AIDS 31(10):1435–1443. https://doi.org/10.1097/QAD.0000000000001493

    Article  PubMed  Google Scholar 

  47. Shiau S, Broun EC, Arpadi SM, Yin MT (2013) Incident fractures in HIV-infected individuals: a systematic review and meta-analysis. Aids 27(12):1949–1957. https://doi.org/10.1097/QAD.0b013e328361d241

    Article  PubMed  Google Scholar 

  48. Collin F, Duval X, Le Moing V, Piroth L, Al Kaied F, Massip P, Villes V, Chene G, Raffi F, group ACA-Cs (2009) Ten-year incidence and risk factors of bone fractures in a cohort of treated HIV1-infected adults. AIDS 23(8):1021–1024. https://doi.org/10.1097/QAD.0b013e3283292195

    Article  PubMed  Google Scholar 

  49. Yin MT, Lund E, Shah J, Zhang CA, Foca M, Neu N, Nishiyama KK, Zhou B, Guo XE, Nelson J, Bell DL, Shane E, Arpadi SM (2014) Lower peak bone mass and abnormal trabecular and cortical microarchitecture in young men infected with HIV early in life. AIDS 28(3):345–353. https://doi.org/10.1097/QAD.0000000000000070

    Article  PubMed  Google Scholar 

  50. Ilha T, Comim FV, Copes RM, Compston JE, Premaor MO (2018) HIV and vertebral fractures: a systematic review and metanalysis. Sci Rep 8(1):7838. https://doi.org/10.1038/s41598-018-26312-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vikulina T, Fan X, Yamaguchi M, Roser-Page S, Zayzafoon M, Guidot DM, Ofotokun I, Weitzmann MN (2010) Alterations in the immuno-skeletal interface drive bone destruction in HIV-1 transgenic rats. Proc Natl Acad Sci U S A 107(31):13848–13853. https://doi.org/10.1073/pnas.1003020107

    Article  PubMed  PubMed Central  Google Scholar 

  52. Moir S, Ho J, Malaspina A, Wang W, DiPoto AC, O’Shea MA, Roby G, Kottilil S, Arthos J, Proschan MA, Chun TW, Fauci AS (2008) Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals. J Exp Med 205(8):1797–1805. https://doi.org/10.1084/jem.20072683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Brown TT, Ruppe MD, Kassner R, Kumar P, Kehoe T, Dobs AS, Timpone J (2004) Reduced bone mineral density in human immunodeficiency virus-infected patients and its association with increased central adiposity and postload hyperglycemia. J Clin Endocrinol Metab 89(3):1200–1206. https://doi.org/10.1210/jc.2003-031506

    Article  CAS  PubMed  Google Scholar 

  54. Walker Harris V, Brown TT (2012) Bone loss in the HIV-infected patient: evidence, clinical implications, and treatment strategies. J Infect Dis 205(Suppl 3):S391–S398. https://doi.org/10.1093/infdis/jis199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Teichmann J, Stephan E, Discher T, Lange U, Federlin K, Stracke H, Friese G, Lohmeyer J, Bretzel RG (2000) Changes in calciotropic hormones and biochemical markers of bone metabolism in patients with human immunodeficiency virus infection. Metabolism 49(9):1134–1139. https://doi.org/10.1053/meta.2000.8609

    Article  CAS  PubMed  Google Scholar 

  56. McNurlan MA, Garlick PJ, Frost RA, Decristofaro KA, Lang CH, Steigbigel RT, Fuhrer J, Gelato M (1998) Albumin synthesis and bone collagen formation in human immunodeficiency virus-positive subjects: differential effects of growth hormone administration. J Clin Endocrinol Metab 83(9):3050–3055. https://doi.org/10.1210/jcem.83.9.5076

    Article  CAS  PubMed  Google Scholar 

  57. Aukrust P, Haug CJ, Ueland T, Lien E, Muller F, Espevik T, Bollerslev J, Froland SS (1999) Decreased bone formative and enhanced resorptive markers in human immunodeficiency virus infection: indication of normalization of the bone-remodeling process during highly active antiretroviral therapy. J Clin Endocrinol Metab 84(1):145–150. https://doi.org/10.1210/jcem.84.1.5417

    Article  CAS  PubMed  Google Scholar 

  58. Jacobson MA, Gambertoglio JG, Aweeka FT, Causey DM, Portale AA (1991) Foscarnet-induced hypocalcemia and effects of foscarnet on calcium metabolism. J Clin Endocrinol Metab 72(5):1130–1135. https://doi.org/10.1210/jcem-72-5-1130

    Article  CAS  PubMed  Google Scholar 

  59. Hileman CO, Labbato DE, Storer NJ, Tangpricha V, McComsey GA (2014) Is bone loss linked to chronic inflammation in antiretroviral-naive HIV-infected adults? A 48-week matched cohort study. AIDS 28(12):1759–1767. https://doi.org/10.1097/QAD.0000000000000320

    Article  CAS  PubMed  Google Scholar 

  60. Ruan A, Tobin NH, Mulligan K, Rollie A, Li F, Sleasman J, Aldrovandi GM (2016) Brief report: Macrophage activation in HIV-infected adolescent males contributes to differential bone loss by sex: Adolescent Trials Network Study 021. J Acquir Immune Defic Syndr 72(4):372–375. https://doi.org/10.1097/QAI.0000000000000953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. McComsey GA, Tebas P, Shane E, Yin MT, Overton ET, Huang JS, Aldrovandi GM, Cardoso SW, Santana JL, Brown TT (2010) Bone disease in HIV infection: a practical review and recommendations for HIV care providers. Clin Infect Dis 51(8):937–946. https://doi.org/10.1086/656412

    Article  PubMed  Google Scholar 

  62. Duvivier C, Kolta S, Assoumou L, Ghosn J, Rozenberg S, Murphy RL, Katlama C, Costagliola D, group AHs (2009) Greater decrease in bone mineral density with protease inhibitor regimens compared with nonnucleoside reverse transcriptase inhibitor regimens in HIV-1 infected naive patients. AIDS 23(7):817–824. https://doi.org/10.1097/QAD.0b013e328328f789

    Article  PubMed  Google Scholar 

  63. Haskelberg H, Hoy JF, Amin J, Ebeling PR, Emery S, Carr A, Group SS (2012) Changes in bone turnover and bone loss in HIV-infected patients changing treatment to tenofovir-emtricitabine or abacavir-lamivudine. PLoS One 7(6):e38377. https://doi.org/10.1371/journal.pone.0038377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Calmy A, Fux CA, Norris R, Vallier N, Delhumeau C, Samaras K, Hesse K, Hirschel B, Cooper DA, Carr A (2009) Low bone mineral density, renal dysfunction, and fracture risk in HIV infection: a cross-sectional study. J Infect Dis 200(11):1746–1754. https://doi.org/10.1086/644785

    Article  CAS  PubMed  Google Scholar 

  65. Komatsu A, Ikeda A, Kikuchi A, Minami C, Tan M, Matsushita S (2018) Osteoporosis-related fractures in HIV-infected patients receiving long-term tenofovir disoproxil fumarate: an observational cohort study. Drug Saf 41(9):843–848. https://doi.org/10.1007/s40264-018-0665-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Short CE, Shaw SG, Fisher MJ, Gilleece YC, Walker-Bone K (2014) Comparison of peripheral forearm DXA and clinical risk factor screening using FRAX(R) to assess the risk of HIV-associated low bone mass: a cross-sectional study. Arch Osteoporos 9:181. https://doi.org/10.1007/s11657-014-0181-4

    Article  PubMed  PubMed Central  Google Scholar 

  67. (2003) The EACS Euroguidelines Group European guidelines for the clinical management and treatment of HIV-infected adults in Europe. AIDS 17:S3–S26

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ta-Wei Tai.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Reprint requests to: Ta-Wei Tai, MD, PhD; Department of Orthopaedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, CJ., Chan, YL., Pramukti, I. et al. People with HIV infection had lower bone mineral density and increased fracture risk: a meta-analysis. Arch Osteoporos 16, 47 (2021). https://doi.org/10.1007/s11657-021-00903-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-021-00903-y

Keywords

Navigation