Skip to main content

Advertisement

Log in

Research on Mechanisms of Chinese Medicines in Prevention and Treatment of Postoperative Adhesion

  • Review
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Postoperative adhesion (PA) is currently one of the most unpleasant complications following surgical procedures. Researchers have developed several new strategies to alleviate the formation of PA to a great extent, but so far, no single measure or treatment can meet the expectations and requirements of clinical patients needing complete PA prevention. Chinese medicine (CM) has been widely used for thousands of years based on its remarkable efficacy and indispensable advantages CM treatments are gradually being accepted by modern medicine. Therefore, this review summarizes the formating process of PA and the efficacy and action mechanism of CM treatments, including their pharmacological effects, therapeutic mechanisms and advantages in PA prevention. We aim to improve the understanding of clinicians and researchers on CM prevention in the development of PA and promote the in-depth development and industrialization process of related drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Imudia AN, Kumar S, Saed GM, et al. Pathogenesis of intra-abdominal and pelvic adhesion development. Sem Reprod Med 2008;26:289–297.

    Article  CAS  Google Scholar 

  2. Kou L, Jiang X, Xiao S, et al. Therapeutic options and drug delivery strategies for the prevention of intrauterine adhesions. J Control Release 2020;318:25–37.

    Article  CAS  PubMed  Google Scholar 

  3. Schoots IG, Levi M, Roossink P, et al. Local intravascular coagulation and fibrin deposition on intestinal ischemia-reperfusion in rats. Surgery 2003;133:411–419.

    Article  PubMed  Google Scholar 

  4. Karpinska IA, Nowakowski T, Wypasek E, et al. A prothrombotic state and denser clot formation in patients following acute limb ischemia of unknown cause. Thromb Res 2020;187:32–38.

    Article  CAS  PubMed  Google Scholar 

  5. Brueggmann D, Tchartchian G, Wallwiener M, et al. Intra-abdominal adhesions: definition, origin, significance in surgical practice, and treatment options. Dtsch Arztebl Int 2010;107:769–775.

    Google Scholar 

  6. Robertson, Deborah. Adhesion prevention in gynaecological surgery. J Obstet Gynaecol Can 2010;32:598–602.

    Article  PubMed  Google Scholar 

  7. Moris D, Chakedis J, Rahnemai-Azar AA, et al. Postoperative abdominal adhesions: clinical significance and advances in prevention and management. J Gastrointest Surg 2017;21:1713–1722.

    Article  PubMed  Google Scholar 

  8. Tseng CC, Tseng A. Effect of acupuncture on postoperative adhesive intestinal obstruction. Acupunct Med 2015;33:338–339.

    Article  PubMed  Google Scholar 

  9. Ott DE. Laparoscopy and adhesion formation, adhesions and laparoscopy. Sem Reprod Med 2008;26:322–330.

    Article  CAS  Google Scholar 

  10. Kim J, Ku B, Kim KH. Validation of the qi blood yin yang deficiency questionnaire on chronic fatigue. Chin Med 2016;11:1–11.

    Article  Google Scholar 

  11. Myohanen H, Vaheri A. Regulation and interactions in the activation of cell-associated plasminogen. Cell Mol Life Sci 2004;61:2840–2858.

    Article  CAS  PubMed  Google Scholar 

  12. Saed GM, Kruger M, Diamond MP. Expression of transforming growth factor-beta and extracellular matrix by human peritoneal mesothelial cells and by fibroblasts from normal peritoneum and adhesions: effect of tisseel. Wound Repair Regen 2004;12:557–564.

    Article  PubMed  Google Scholar 

  13. Liakopoulos V, Roumeliotis S, Gorny X, et al. Oxidative stress in patients undergoing peritoneal dialysis: a current review of the literature. Oxid Med Cell Longev 2017;2017:3494867.

    PubMed  PubMed Central  Google Scholar 

  14. Saini R, Bains L, Hadke NS, et al. Evaluation of oxidative stress response in endoscopic and Lichtenstein hernia repair: a randomized control study. Int J Abdom Wall Hernia Surg 2020;3:148–154.

    Article  Google Scholar 

  15. Awonuga AO, Belotte J, Abuanzeh S, et al. Advances in the pathogenesis of adhesion development: the role of oxidative stress. Reprod Sci 2014;21:823–836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mutsaers SE. Mesothelial cells: their structure, function and role in serosal repair. Respirology 2002;7:171–191.

    Article  PubMed  Google Scholar 

  17. Aroeira LS, Aguilera A, Sanchez-Tomero JA, et al. Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J Am Soc Nephrol 2007;18:2004–2013.

    Article  CAS  PubMed  Google Scholar 

  18. Agarwal A, Allamaneni SS. Role of free radicals in female reproductive diseases and assisted reproduction. Reprod Biomed Online 2004;9:338–347.

    Article  CAS  PubMed  Google Scholar 

  19. Davey AK, Maher PJ. Surgical adhesions: a timely update, a great challenge for the future. J Minim Invasive Gynecol 2007;14:15–22.

    Article  PubMed  Google Scholar 

  20. Kou L, Jiang X, Xiao S, et al. Therapeutic options and drug delivery strategies for the prevention of intrauterine adhesions. J Control Release 2020;318:25–37.

    Article  CAS  PubMed  Google Scholar 

  21. DiZerega GS, ed. Peritoneal surgery. New York: Springer New York; 2000:3–37.

    Book  Google Scholar 

  22. Shimomura M, Hinoi T, Ikeda S, et al. Preservation of peritoneal fibrinolysis owing to decreased transcription of plasminogen activator inhibitor-1 in peritoneal mesothelial cells suppresses postoperative adhesion formation in laparoscopic surgery. Surgery 2013;153:344–356.

    Article  PubMed  Google Scholar 

  23. Arung W, Meurisse M, Detry O. Pathophysiology and prevention of postoperative peritoneal adhesions. World J Gastroenterol 2011;17:4545–4553.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Winckiewicz M, Staniszewski R, Polubińska A, et al. Peritoneal mesothelium the role in fibrin transformations. Przegl Lek 2006;63:778–781.

    PubMed  Google Scholar 

  25. Cheong YC, Laird SM, Li TC, et al. Peritoneal healing and adhesion formation/reformation. Hum Reprod Update 2001;7:556–566.

    Article  CAS  PubMed  Google Scholar 

  26. Van D, Wal J, Jeekel J. Biology of the peritoneum in normal homeostasis and after surgical trauma. Colorectal Dis 2007;9:9–13.

    Article  Google Scholar 

  27. Rout UK, Diamond MP. Role of plasminogen activators during healing after uterine serosal lesioning in the rat. Fertil Steril 2003;79:138–145.

    Article  PubMed  Google Scholar 

  28. Sirén V, Immonen I. uPA, tPA and PAI-1 mRNA expression in periretinal membranes. Curr Eye Res 2003;27:261–267.

    Article  PubMed  Google Scholar 

  29. Ward BC, Panitch A. Abdominal adhesions: current and novel therapies. J Surg Res 2009;165:91–111.

    Article  PubMed  Google Scholar 

  30. Yan S, Yue Y, Zong Y, et al. Tetramethylpyrazine improves postoperative tissue adhesion: a drug repurposing. Chin J Integr Med 2019;25:554–560.

    Article  CAS  PubMed  Google Scholar 

  31. Su Q, Lv X, Ye Z. Ligustrazine attenuates myocardial injury induced by coronary microembolization in rats by activating the PI3K/Akt pathway. Oxidat Med Cell Longev 2019;2019:6791457.

    Article  Google Scholar 

  32. Zhang H, Song Y, Li Z, et al. Evaluation of ligustrazine on the prevention of experimentally induced abdominal adhesions in rats. Int J Surg 2015;21:115–121.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang H, Zhang T, Song Y, et al. Effect of coix seed on the expression of peritoneal fluid inflammatory-related factors and vascular endothelial growth factor and vascular endothelial marker CD34 in experimental abdominal adhesion tissue in rats. J Xinxiang Med Coll (Chin) 2014;31:792–795.

    Google Scholar 

  34. Fletcher NM, Awonuga AO, Saed MG, et al. Lycopene, a powerful antioxidant, significantly reduces the development of the adhesion phenotype. Syst Biol Reprod Med 2014;60:14–20.

    Article  CAS  PubMed  Google Scholar 

  35. Vazquez-Prieto MA, Rodriguez Lanzi C, Lembo C, et al. Garlic and onion attenuates vascular inflammation and oxidative stress in fructose-fed rats. J Nutr Metab 2011;2011:475216.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hodge G, Hodge S, Han P. Allium sativum (garlic) suppresses leukocyte inflammatory cytokine production in vitro: potential therapeutic use in the treatment of inflammatory bowel disease. Cytometry 2002;48:209–215.

    Article  CAS  PubMed  Google Scholar 

  37. Li B, Li Q, Song S, et al. Effect of total alkaloids on the expression of endothelial function, inflammatory mediators, and adhesion tissue-related factors in peritoneal adhesion rats. World Clin Med (Chin) 2017;38:815–821.

    Google Scholar 

  38. Lyons MM, Yu C, Toma RB, et al. Resveratrol in raw and baked blueberries and bilberries. J Agric Food Chem 2003;51:5867–5870.

    Article  CAS  PubMed  Google Scholar 

  39. Sales JM, Resurreccion AVA. Resveratrol in peanuts. Crit Rev Food Sci Nutr 2014;54:734–770.

    Article  CAS  PubMed  Google Scholar 

  40. Harikumar KB, Aggarwal BB. Resveratrol: a multitargeted agent for age-associated chronic diseases. Cell Cycle 2008;7:1020–1035.

    Article  CAS  PubMed  Google Scholar 

  41. Pennisi M, Bertino G, Gagliano C, et al. Resveratrol in hepatitis C patients treated with pegylated-interferon-α-2b and ribavirin reduces sleep disturbance. Nutrients 2017;9:897.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Malaguarnera G, Pennisi M, Bertino G, et al. Resveratrol in patients with minimal hepatic encephalopathy. Nutrients 2018;10:329.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Piotrowska H, Kucinska M, Murias M. Biological activity of piceatannol: leaving the shadow of resveratrol. Mutat Res 2012;750:60–82.

    Article  CAS  PubMed  Google Scholar 

  44. Wei G, Chen X, Wang G, et al. Effect of resveratrol on the prevention of intra-abdominal adhesion formation in a rat model. Cell Physiol Biochem 2016;39:33–37.

    Article  CAS  PubMed  Google Scholar 

  45. Kahkeshani N, Farzaei F, Fotouhi M, et al. Pharmacological effects of gallic acid in health and diseases: a mechanistic review. Iran J Basic Med Sci 2019;22:225–237.

    PubMed  PubMed Central  Google Scholar 

  46. Wei G, Wu Y, Gao Q, et al. Gallic acid attenuates postoperative intra-abdominal adhesion by inhibiting inflammatory reaction in a rat model. Med Sci Monit 2018;9:827–838.

    Article  Google Scholar 

  47. Verrecchia F, Mauviel A, Farge D. Transforming growth factor-beta signaling through the Smad proteins: role in systemic sclerosis. Autoimmun Rev 2006;5:563–569.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang C, Yang G. Intraperitoneal perfusion of ligustrazin in the treatment of intestinal adhesion: a report of 6 cases. J Pract Med (Chin) 2000;4:319.

    Google Scholar 

  49. Sui X, Zhang Q, Qiu H, et al. Mechanism of salvianolate in preventing postoperative intestinal adhesion in rats. J Chin Integr Med (Chin) 2007;5:521–525.

    Article  CAS  Google Scholar 

  50. Chen I-GJ, Lee MS, Lin MK, et al. Blue light decreases tanshinone II A content in Salvia miltiorrhiza hairy roots via genes regulation. J Photochem Photobiol B 2018;183:164–171.

    Article  CAS  PubMed  Google Scholar 

  51. Wang C, Li X, Meng X, et al. Prevention of experimental postoperative peritoneal adhesions through the intraperitoneal administration of tanshinone II A. Planta Med 2014;80:969–973.

    Article  CAS  PubMed  Google Scholar 

  52. Zhu L, Gu P, Shen H. Protective effects of berberine hydrochloride on DSS-induced ulcerative colitis in rats. Int Immunopharmacol 2019;68:242–251.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang Y, Li X, Zhang Q, et al. Berberine hydrochloride prevents postsurgery intestinal adhesion and inflammation in rats. J Pharmacol Exp Ther 2014;349:417–426.

    Article  PubMed  Google Scholar 

  54. Yang Y, Ji W, Zhu Z, et al. Rhynchophylline suppresses soluble Aβ 1–42-induced impairment of spatial cognition function via inhibiting excessive activation of extrasynaptic NR2B-containing NMDA receptors. Neuropharmacology 2018;135:100–112.

    Article  CAS  PubMed  Google Scholar 

  55. Song Y, Zhang H, Liu R, et al. Prevention of abdominal adhesions in rats by rhynchophylline through inhibition of Smad singnaling pathway. Acta Pharm Sin 2017;52:229–235.

    Google Scholar 

  56. Wu L, Gao Y, Zhang S, et al. The effects of breviscapine injection on hypertension in hypertension-induced renal damage patients: a systematic review and a meta-analysis. Front Pharmacol 2019;10:118–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu Y, Wen P, Zhang X, et al. Breviscapine ameliorates CCl4-induced liver injury in mice through inhibiting inflammatory apoptotic response and ROS generation. Int J Mol Med 2018;42:755–768.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lin Y, Lu Z, Liang X, et al. Effect of breviscapine against hepatic ischemia reperfusion injury. J Surg Res 2016;203:268–274.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang H, Song Y, Li Z, et al. Evaluation of breviscapine on prevention of experimentally induced abdominal adhesions in rats. Am J Surg 2015;211:1143–1152.

    Article  PubMed  Google Scholar 

  60. Zhang Q, Qi C, Wang H, et al. Biocompatible and degradable Bletilla striata polysaccharide hemostasis sponges constructed from natural medicinal herb Bletilla striata. Carbohydr Polym 2019;226:115304.

    Article  CAS  PubMed  Google Scholar 

  61. Song Y, Zeng R, Hu L, et al. In vivo wound healing and in vitro antioxidant activities of Bletilla striata phenolic extracts. Biomed Pharmacother 2017;93:451–461.

    Article  CAS  PubMed  Google Scholar 

  62. Jiang F, Li M, Wang H, et al. Coelonin, an anti-inflammation active component of Bletilla striata and its potential mechanism. Int J Mol Sci 2019;20:4422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xu D, Pan Y, Chen J. Chemical constituents, pharmacologic properties, and clinical applications of Bletilla striata. Front Pharmacol 2019;10:1168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu B, Zhang Q, Wu X, et al. Effect of Bletilla striata on the prevention of postoperative peritoneal adhesions in abrasion-induced rat model. Evid Based Complement Alternat Med 2019;2019:914754.

    Article  Google Scholar 

  65. Han JW, Shim DW, Shin WY, et al. Anti-inflammatory effect of emodin via attenuation of NLRP3 inflammasome activation. Int J Mol Sci 2015;16:8102–8109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hwang JK, Noh EM, Moon SJ, et al. Emodin suppresses inflammatory responses and joint destruction in collagen-induced arthritic mice. Rheumatology 2013;52:1583–1591.

    Article  CAS  PubMed  Google Scholar 

  67. Lin S. Study on the effects of emodin on pancreatic cancer and its mechanisms [Dissertation]. Hangzhou: Zhejiang University;2011.

    Google Scholar 

  68. Dong M, Jia Y, Zhang Y, et al. Emodin protects rat liver from CCl(4)-induced fibrogenesis via inhibition of hepatic stellate cells activation. World J Gastroenterol 2009;15:4753–4762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wei G, Wu Y, Gao Q, et al. Effect of emodin on preventing postoperative intra-abdominal adhesion formation. Oxidat Med Cell Longev 2017;2017:1740317.

    Article  Google Scholar 

  70. Jia Z, He J. Paeoniflorin ameliorates rheumatoid arthritis in rat models through oxidative stress, inflammation and cyclooxygenase 2. Exp Ther Med 2016;11:655–659.

    Article  CAS  PubMed  Google Scholar 

  71. Ni J, Yang D, Song L, et al. Protective effects of paeoniflorin on alveolar bone resorption and soft-tissue breakdown in experimental periodontitis. J Periodont Res 2015;51:257–264.

    Article  Google Scholar 

  72. Yu J, Zhu X, Qi X, et al. Paeoniflorin protects human EA.hy926 endothelial cells against gamma-radiation induced oxidative injury by activating the NF-E2-related factor 2/heme oxygenase-1 pathway. Toxicol Lett 2013;218:224–234.

    Article  CAS  PubMed  Google Scholar 

  73. Feng X, Li Y, Wang Y, et al. Danhong Injection in cardiovascular and cerebrovascular diseases: pharmacological actions, molecular mechanisms, and therapeutic potential. Pharmacol Res 2018;139:62–75.

    Article  PubMed  Google Scholar 

  74. Wan J, Wan H, Yang R, et al. Protective effect of Danhong Injection combined with Naoxintong Capsule on cerebral ischemia-reperfusion injury in rats. J Ethnopharmacol 2017;211:348–357.

    Article  PubMed  Google Scholar 

  75. Guo Z, Zhu Y, Su X, et al. Danhong Injection dose-dependently varies amino acid metabolites and metabolic pathways in the treatment of rats with cerebral ischemia. Acta Pharmacol Sin 2015;36:748–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen J, Wei J, Huang Y, et al. Danhong Injection enhances the therapeutic efficacy of mesenchymal stem cells in myocardial infarction by promoting angiogenesis. Front Physiol 2018;9:991.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wu Y, Wei G, Yu J, et al. Danhong Injection alleviates postoperative intra-abdominal adhesion in a rat model. Oxidat Med Cell Long 2019;2019:4591384.

    Google Scholar 

  78. Wu F, Liu W, Feng H, et al. Application of traditional Chinese medicines in postoperative abdominal adhesion. Evid Based Complement Alternat Med 2020;2020:8073467.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Zhao M, Bian YY, Yang L, et al. Huoxuetongfu Formula alleviates intraperitoneal adhesion by regulating macrophage polarization and the SOCS/JAK2/STAT/PPAR-γ signaling pathway. Mediat Inflamm 2019;2019:1769374.

    Article  Google Scholar 

  80. Yan S, Yue Y, Yang L, et al. Effects of classical prescriptions of blood-activating and organ-purging formula on immunologic barrier function of intestinal mucosa in rats with postoperative peritoneal adhesion. J Nanjing Univ Tradit Chin Med (Chin) 2017;33:519–523.

    Google Scholar 

  81. Yang L, Bian Y, Qian H, et al. A multicenter randomized double blind controlled clinical study on the prevention and treatment of postoperative abdominal adhesion with Huoxue Tongfu Formula. J Nanjing Univ Tradit Chin Med 2019;35:130–134.

    Google Scholar 

  82. Yang L, Bian Y, Zhao M, et al. Relationship between inflammatory cytokines and postoperative peritoneal adhesion and discussion on prevention by traditional Chinese medicine. Chin J Tradit Chin Med (Chin) 2018;36:2935–2939.

    CAS  Google Scholar 

  83. Zeng L, Yan S, Li W, et al. Effects of Huoxue Tongfu Formula on the expression of MCP-1, CD40 and CD40L caused by postoperative peritoneal adhesion in rats. Chin Tradit Patent Med (Chin) 2015;37:2101–2108.

    Google Scholar 

  84. Zhao M, Bian Y, Yang L, et al. Huoxuetongfu Formula alleviates intraperitoneal adhesion by regulating macrophage polarization and the SOCS/JAK2/STAT/PPAR-γ signalling pathway. Mediators Inflamm 2019;2019:1769374.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Tian K. Science of acupuncture and moxibustion should include standards related to acupuncture and moxibustion. Chin Acupunct Moxibust (Chin) 2016;36:315–318.

    Google Scholar 

  86. Chen X, Yue Z, Liu L, et al. Ancient and modern application and research of Zusanli point. Clin J Acupunct Moxibust (Chin) 2016;32:80–83.

    CAS  Google Scholar 

  87. Li X, Liu S, Li M, et al. Effect of herbal moxibustion on Shenque Bazhen Points on postoperative adhesive intestinal obstruction and inflammatory response factors. World Tradit Chin Med (Chin) 2020;15:2635–2638.

    Google Scholar 

  88. Xu X, Meng X, Li S, et al. Bioactivity, health benefits, and related molecular mechanisms of curcumin: current progress, challenges, and perspectives. Nutrients 2018;10:1553.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Soleimani V, Sahebkar A, Hosseinzadeh H. Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: review. Phytother Res 2018;32:985–995.

    Article  CAS  PubMed  Google Scholar 

  90. Kocaadam B, Şanlier N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr 2015;57:2889–2895.

    Article  Google Scholar 

  91. Mani H, Sidhu GS, Kumari R, et al. Curcumin differentially regulates TGF-beta1, its receptors and nitric oxide synthase during impaired wound healing. Biofactors 2002;16:29–43.

    Article  CAS  PubMed  Google Scholar 

  92. Türkoğlu A, Gül M, Yuksel HK, et al. Effect of intraperitoneal curcumin instillation on postoperative peritoneal adhesions. Med Princ Pract 2014;24:153–158.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Kahkeshani N, Farzaei F, Fotouhi M, et al. Pharmacological effects of gallic acid in health and diseases: a mechanistic review. Iran J Basic Med Sci 2019;22:225–237.

    PubMed  PubMed Central  Google Scholar 

  94. Wei G, Wu Y, Gao Q, et al. Gallic acid attenuates postoperative intra-abdominal adhesion by inhibiting inflammatory reaction in a rat model. Med Sci Monit 2018;24:827–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Parsaei P, Karimi M, Asadi SY, et al. Bioactive components and preventive effect of green tea (Camellia sinensis) extract on post-laparotomy intra-abdominal adhesion in rats. Int J Surg 2013;11:811–815.

    Article  PubMed  Google Scholar 

  96. Song Y, Zhang H, Liu RL, et al. Prevention of abdominal adhesions in rats by rhynchophylline through inhibition of Smad singnaling pathway. Acta Pharm Sin 2017;52:229–235.

    Google Scholar 

  97. Mousavizadeh K, Jameie B. Effects of silymarin on postoperative peritoneal adhesions and cytokine expression in a rat model. Fertil Steril 2007;109-114.

  98. Karimi M, Parsaei P, Shafiei-Alavijeh S, et al. Effect of silymarin alcoholic extract on surgery-induced intraperitoneal adhesion in rats. Surg Pract 2016;20:27–33.

    Article  Google Scholar 

  99. Inoue K, Naito Y, Takagi T, et al. Daikenchuto, a Kampo medicine, regulates intestinal fibrosis associated with decreasing expression of heat shock protein 47 and collagen content in a rat colitis model. Biol Pharm Bull 2011;34:1659–1665.

    Article  CAS  PubMed  Google Scholar 

  100. Miyoshi J, Nobutani K, Musch MW, et al. Time-, sex-, and dose-dependent alterations of the gut microbiota by consumption of dietary Daikenchuto (TU-100). Evid Based Complement Alternat Med 2018;2018:7415975.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Watanabe J, Kaifuchi N, Kushida H, et al. Intestinal, portal, and peripheral profiles of Daikenchuto (TU-100)’s active ingredients after oral administration. Pharmacol Res Perspect 2015;3:e00165.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Okada KI, Kawai M, Hirono S, et al. Perioperative administration of Daikenchuto (TJ-100) reduces the postoperative paralytic ileus in patients with pancreaticoduodenectomy. Hepatogastroenterology 2015;62:466–471.

    PubMed  Google Scholar 

  103. Zhao J, Zhao T, Xie FW, et al. Effect of Tongchang Pill on antioxidant capacity of ileum tissue in rat adhesive intestinal obstruction. Chin J Exp Formul (Chin) 2012;18:220–221.

    CAS  Google Scholar 

  104. Agacayak E, Tunc S Y, Icen MS, et al. Honokiol decreases intra-abdominal adhesion formation in a rat model. Gynecol Obstet Invest 2015;79:160–167.

    Article  CAS  PubMed  Google Scholar 

  105. Arslan S, Zeytun H, Basuguy E, et al. Cordycepin prevents postoperative formation of intra-abdominal adhesion in a rat model: an experimental study. Ulus Travma Acil Cerrahi Derg 2017;23:273–278.

    PubMed  Google Scholar 

  106. Lin X, Liu B, Yi J, et al. Effects of Four Mill Soup on gastrointestinal motility and serum gastrin and somatostatin in mice with different models. Chin J Tradit Chin Med 2013;28:772–774.

    CAS  Google Scholar 

  107. Oyama F, Futagami M, Shigeto T, et al. Preventive effect of Daikenchuto, a traditional Japanese herbal medicine, on onset of ileus after gynecological surgery for malignant tumors. Asia Pac J Clin Oncol 2020;16:254–258.

    Article  PubMed  Google Scholar 

  108. Wu S, Uyama N, Itou RA, et al. The effect of Daikenchuto, Japanese herbal medicine, on adhesion formation induced by cecum cauterization and cecum abrasion in mice. Biol Pharm Bull 2019;42:179–186.

    Article  CAS  PubMed  Google Scholar 

  109. The FO, Boeckxstaens GE, Snoek SA, et al. Activation of the cholinergic anti-inflammatory pathway ameliorates postoperative ileus in mice. Gastroenterology 2007;133:1219–1228.

    Article  CAS  PubMed  Google Scholar 

  110. Li H, Tang C, Li S, et al. Effects of thread embedding therapy on nucleotides and gastrointestinal hormones in the patient of chronic gastritis. Chin Acupunct Mox (Chin) 2005;25:301–303.

    CAS  Google Scholar 

  111. Liu Y, Tan W, Zhu Q, et al. Effect of electroacupuncture at Zusanli on gastrointestinal microcirculation and 5-HT in FGIDs rats. J Liaoning Univ Tradit Chin Med (Chin) 2019;20:79–81.

    Google Scholar 

  112. Zhang L, Wang H, Huang Z, et al. Inhibiting effect of electroacupuncture at Zusanli on early inflammatory factor levels formed by postoperative abdominal adhesions. Evid Based Complement Alternat Med 2014;2014:950326.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Song CY. Traditional Chinese medicine applied to the umbilical cord with acupuncture accelerated the exhaust after appendectomy. Electr J Cardiovasc Dis Integr Tradit Chin Western Med (Chin) 2019;7:135.

    Google Scholar 

  114. Mei C. Clinical observation on application of nitrocellulose on umbilical cord to promote postoperative gastrointestinal function recovery in 60 cases. J Changchun Univ Tradit Chin Med (Chin) 2008;3:284–285.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Wang YL wrote the original draft preparation. Zhang HX, Chen YQ, Yang LL searched literature; Li ZJ, Zhao M, and LI WL helped with revision; Bian YY and Zeng L revised the article critically. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Li Zeng.

Additional information

Conflict of Interest

The authors declare no competing financial interest.

Supported by the National Natural Science Foundation of China (Nos. 82174394, 81673982, 81704084), the Science and Technology Development Fund, Macau SAR (No. 0121/2022/A3), the Faculty Research Grants of Macau University of Science and Technology (No. FRG-22-110-FC), the Natural Science Foundation of Jiangsu Province (No. BK20201401), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX21_1667), Chinese Medicine Technology Development Project of Jiangsu Province (No. QN202002), the Natural Science Foundation of Nanjing University of Chinese Medicine (No. NZY81704084), and the Open Projects of the Discipline of Chinese Medicine of Nanjing University Supported by the Subject of Academic priority discipline of Jiangsu Higher Education Institutions (No. ZYX03KF63)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Yl., Zhang, Hx., Chen, Yq. et al. Research on Mechanisms of Chinese Medicines in Prevention and Treatment of Postoperative Adhesion. Chin. J. Integr. Med. 29, 556–565 (2023). https://doi.org/10.1007/s11655-023-3735-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-023-3735-0

Keywords

Navigation