Skip to main content
Log in

Differentially expressed genes in heads and tails of Angelica sinensis diels: Focusing on ferulic acid metabolism

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To explore the scientific connotation of the discrepant pharmaceutical activities between the head and tail of Angelica sinensis diels (AS), an important herb extensively utilized in Chinese medicine, by the approach of transcriptome sequencing.

Methods

Ten samples of AS were randomly collected in Min County, Gansu Province of China. Transcriptome sequencing of AS was accomplished in a commercial ILLumina HiSeq-2000 platform. The transcriptome of each head and tail of AS were fixed in a gene chip, and detected under the procedure of Illumina HiSeq-2000. Differentially expressed unigenes between the heads and tails of AS were selected by Shanghai Biotechnology Corporation (SBC) online analysis system, based on Gene Ontology, Kyoto Encyclopedia of Genes and Genomes and relevant bioinformatic database.

Results

Totally 63,585 unigenes were obtained from AS by high-throughput sequencing platform. Among which 3359 unigenes were identified as differentially expressed unigenes between the heads and tails of AS by SBC analysis system scanning. Of which 15 differentially expressed unigenes participate in the metabolic regulation of phenylpropanoid biosynthesis (PB) pathway and ferulic acid metabolites, in response to the distinguished pharmaceutical actions of the heads and tails of AS.

Conclusion

Different content of ferulic acid in the heads and tails of AS is related to the differentially expressed genes, particularly involved in the PB pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang HM, Zhang BG. Investigation on the growth activities of Angelica sinensis Diels in Gansu region. Chinese Agricul Sci Bull (Chin) 2010;26:386–389.

    Article  CAS  Google Scholar 

  2. Gu GG, ed. Shennong's classic of materia medica. Yang PJ, proofreader. 2nd ed. Beijing: Xueyuan Publishing Corporation; 2002:166–167.

    Google Scholar 

  3. Li YM, Tao YF. The pharmaceutical statistics and analysis of Xin Fang Ba Zheng, Zhang Jing-yue. J Liter Tradit Chin Med (Chin) 2009;26:16–17.

    Google Scholar 

  4. Zhao DA, Wang WJ, Sun AJ. Sixteen methods in activating blood and eliminating stasis. J Tradit Chin Med Jiangxi (Chin) 2002;33(2):51–52.

    Google Scholar 

  5. Zhao DP, Yang WY, Chen XF. Recent progress of ferulic acid. Shi-zhen Tradit Chin Med Drugs (Chin) 2008;19:241–244.

    Google Scholar 

  6. Liu XD, Li WD, Cai BC. Resent progress of chemical component and cardiovascular and cerebrovascular systematic action in Angelica sinensis. J Nanjing Univ Tradit Chin Med (Chin) 2010;26:155–157.

    Google Scholar 

  7. Song QY, Fu YB, Liu J, Zheng D, Han L, Huang XS. Research of chemical component in Angelica sinensis. Tradit Chin Herb Drugs (Chin) 2011;42(10):43–46.

    Google Scholar 

  8. Qiao M, Xiang CM. Determining ferulic acid content in different medicament of Angelica sinensis by HPLC. Arch Tradit Chin Med (Chin) 2005;23:1892–1893.

    Google Scholar 

  9. Yang YW, Wang YL, Sa RN, Pan XP, Xiao YQ, Sun YJ, et al. Chemical fingerprinting of Angelica sinensis at different growth stages by1H-NMR. Chin J Magnet Reson (Chin) 2013;30(1):70–77.

    CAS  Google Scholar 

  10. Vanholme R, Storme V, Vanholme B, Sundin L, Christensen JH, Goeminne G, et al. A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. Plant Cell 2012;24:3506–3529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dehghan S, Sadeghi M, Pöppel A, Lakes-Harlan R, Kavousi HR, Vilcinskas A, et al. Differential inductions of phenylalanine ammonia-lyase and chalcone synthase during wounding, salicylic acid treatment, and salinity stress in safflower, Carthamus tinctorius. Biosci Rep 2014;34:273–282.

    Article  CAS  Google Scholar 

  12. Morita H, Mori T, Wanibuchi K, Kato R, Sugio S, Abe I. Crystallization and preliminary X-ray analysis of 4-coumarate: CoA ligase from Arabidopsis thaliana. Acta Crystallogr Sect F-Struct Bio Cryst Commun 2011;67:409–411.

    Article  CAS  Google Scholar 

  13. Hu YL, Gai Y, Yin L, Wang X, Feng C, Feng L, et al. Crystal structures of a populus tomentosa 4-coumarate: CoA ligase shed light on its enzymatic mechanisms. Plant Cell 2010;22:3093–3104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kumar A, Ellis BE. 4-Coumarate: CoA ligase gene family in Rubus idaeus: cDNA structures,evolution, and expression. Plant Mol Biol 2003;51:327–340.

    Article  CAS  PubMed  Google Scholar 

  15. Kim J, Choi B, Park YH, Cho BK, Lim HS, Natarajan S, et al. Molecular characterization of ferulate 5-hydroxylase gene from kenaf (Hibiscus cannabinus L.). Sci World J 2013;10:421578.

    Google Scholar 

  16. Zhang NH, Wei ZQ, He JX, Du LF, Liang HG. An efficient and economic method for preparation of high quality plant RNA. Progr Biochem Bioph (Chin) 2004;31:947–949.

    CAS  Google Scholar 

  17. Yang JF, Liu YQ, Zhou B. Determining microelement content in traditional Chinese drug, Angelica sinensis. J Qiqihaer Med School (Chin) 2003;24:785–785.

    Google Scholar 

  18. Wang GY, Wei HC, Liu J. Determining microelement content in different medicament partitions of traditional Chinese drug, Angelica sinensis. Heilongjiang Med Pharm (Chin) 2003;26:30–30.

    CAS  Google Scholar 

  19. Lam HW, Lin HC, Lao SC, Gao JL, Hong SJ, Leong CW, et al. The angiogenic effects of Angelica sinensis extract on HUVEC in vitro and zebrafish in vivo. J Cell Biochem 2008;103:195–211.

    Article  CAS  PubMed  Google Scholar 

  20. Lin JM, Zhao JY, Zhuang QC, Hong ZF, Peng J. Xiongshao capsule promotes angiogenesis of HUVEC via enhancing cell proliferation and up-regulating the expression of bFGF and VEGF. Chin J Integr Med 2011;17:840–846.

    Article  PubMed  Google Scholar 

  21. Wu SJ, Ng LT, Lin CC. Antioxidant activities of some common ingredients of traditional chinese medicine, Angelica sinensis, Lycium barbarum and Poria cocos. Phytother Res 2004;18:1008–1012.

    Article  PubMed  Google Scholar 

  22. Gelinas P, McKinnon CM. Effect of wheat variety, farming site, and bread-baking on total phenolics. Int J Food Sci Technol 2006;41:329–332.

    Article  CAS  Google Scholar 

  23. Liu XX, Zhou HJ, Cai L, Zhang W, Ma JL, Tao XJ, et al. NADPH oxidase-dependent formation of reactive oxygen species contributes to transforming growth factor β1- induced epithelial-mesenchymal transition in rat peritoneal mesothelial cells, and the role of astragalus intervention. Chin J Integr Med 2014;20:667–674.

    Article  CAS  PubMed  Google Scholar 

  24. Bunel V, Antoine MH, Nortier J, Duez P, Stévigny C. Nephroprotective effects of ferulic acid, Z-ligustilide and E-ligustilide isolated from Angelica sinensis against cisplatin toxicity in vitro. Toxicol In Vitro 2015;29:458–467.

    Article  CAS  PubMed  Google Scholar 

  25. Gim SA, Sung JH, Shah FA, Kim MO, Koh PO. Ferulic acid regulates the AKT/GSK-3β/CRMP-2 signaling pathway in a middle cerebral artery occlusion animal model. Lab Anim Res 2013;29:63–69.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Joy N, Asha S, Mallika V, Soniya EV. De novo transcriptome sequencing reveals a considerable bias in the incidence of simple sequence repeats towards the downstream of 'pre-miRNAs' of black pepper. PLoS One 2013;8:e56694.

    Article  Google Scholar 

  27. Zhang X, Liu CJ. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids. Mol Plant 2015;8:17–27.

    Article  CAS  PubMed  Google Scholar 

  28. Zarei Jaliani H, Farajnia S, Safdari Y, Mohammadi SA, Barzegar A, Talebi S. Optimized condition for enhanced soluble-expression of recombinant mutant anabaena variabilis phenylalanine ammonia lyase. Adv Pharm Bull 2014;4:261–266.

    PubMed  PubMed Central  Google Scholar 

  29. Palafox-Carlos H, Contreras-Vergara CA, Muhlia-Almazán A, Islas-Osuna MA, González-Aguilar GA. Expression and enzymatic activity of phenylalanine ammonia-lyase and p-coumarate 3-hydroxylase in mango (Mangifera indica 'Ataulfo') during ripening. Genet Mol Res 2014;13:3850–3858.

    Article  CAS  PubMed  Google Scholar 

  30. Morant M, Schoch GA, Ullmann P, Ertunç T, Little D, Olsen CE, et al. Catalytic activity, duplication and evolution of the CYP98 cytochrome P450 family in wheat. Plant Mol Biol 2007;63:1–19.

    Article  CAS  PubMed  Google Scholar 

  31. Li JM, Qin X. Bioinformatics analysis of ferulate-5-hydroxylase in Plants. Biotechnol Bull (Chin) 2010;6:195–201.

    Google Scholar 

  32. Lu SP, Ni ZY, Fan L. Recent advance in study of lignin biosynthesis enzymes gene regulatory research. Mol Botanic Breed (Chin) 2011;9:1545–1555.

    Google Scholar 

  33. Ruegger M, Meyer K, Cusumano JC, Chapple C. Regulation of ferulate-5-hydroxylase expression in Arabidopsis in the context of sinapate ester biosynthesis. Plant Physiol 1999;119:101–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Humphreys JM, Hemm MR, Chapple C. New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase. Proc Nati Acad Sci U S A 1999;96:10045–10050.

    Article  CAS  Google Scholar 

  35. Chen HY, Babst BA, Nyamdari B, Hu H, Sykes R, Davis MF, et al. Ectopic expression of a loblolly pine class II 4-coumarate: CoA ligase alters soluble phenylpropanoid metabolism but not lignin biosynthesis in populus. Plant Cell Physiol 2014;55:1669–1678.

    Article  CAS  PubMed  Google Scholar 

  36. Yuan Y, Yu S, Yu J, Zhan Z, Li M, Liu G, et al. Predicting the function of 4-coumarate: CoA ligase (LJ4CL1) in Lonicera japonica. Int J Mol Sci 2014;15:2386–2399.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wagner A, Donaldson L, Kim H, Phillips L, Flint H, Steward D, et al. Suppression of 4-coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata. Plant Physiol 2009;149:370–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Giordano A, Liu Z, Panter SN, Dimech AM, Shang Y, Wijesinghe H, et al. Reduced lignin content and altered lignin composition in the warm season forage grass Paspalum dilatatum by down-regulation of a cinnamoyl coa reductase Gene. Transgenic Res 2014;23:503–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Van Acker R, Leplé JC, Aerts D, Storme V, Goeminne G, Ivens B, et al. Improved saccharification and ethanol yield from field-grown transgenic poplar deficient in cinnamoyl-CoA reductase. Proc Nati Acad Sci U S A 2014;111:845–850.

    Article  Google Scholar 

  40. Tu Y, Rochfort S, Liu Z, Ran Y, Griffith M, Badenhorst P, et al. Functional analyses of caffeic acid o-methyltransferase and cinnamoyl-CoA-reductase genes from perennial ryegrass (Lolium perenne). Plant Cell 2010;22:3357–3373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morgan CA, Hurley TD. Characterization of two distinct structural classes of selective aldehyde dehydrogenase 1A1 inhibitors. J Med Chem 2015;58:1964–1975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arthan D, Kittakoop P, Esen A, Svasti J. Furostanol glycoside 26-O-beta-glucosidase from the leaves of Solanum torvum. Phytochemistry 2006;67:27–33.

    Article  CAS  PubMed  Google Scholar 

  43. Yu G, Ma YX, Duan JA, Song BS, He ZQ. Identification of differentially expressed genes involved in early bolting of Angelica sinensis (Apiaceae). Genet Mol Res 2012;11:494–450.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-jun Ding.

Additional information

Supported by the National Natural Science Foundation of China (No. 81273899)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Li, Wh., An, R. et al. Differentially expressed genes in heads and tails of Angelica sinensis diels: Focusing on ferulic acid metabolism. Chin. J. Integr. Med. 23, 779–785 (2017). https://doi.org/10.1007/s11655-016-2603-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-016-2603-1

Keywords

Navigation