Skip to main content
Log in

Logistic biplot for nominal data

  • Regular Article
  • Published:
Advances in Data Analysis and Classification Aims and scope Submit manuscript

Abstract

Classical biplot methods allow for the simultaneous representation of individuals (rows) and variables (columns) of a data matrix. For binary data, logistic biplots have been recently developed. When data are nominal, both classical and binary logistic biplots are not adequate and techniques such as multiple correspondence analysis (MCA), latent trait analysis (LTA) or item response theory (IRT) for nominal items should be used instead. In this paper we extend the binary logistic biplot to nominal data. The resulting method is termed “nominal logistic biplot”(NLB), although the variables are represented as convex prediction regions rather than vectors. Using the methods from computational geometry, the set of prediction regions is converted to a set of points in such a way that the prediction for each individual is established by its closest “category point”. Then interpretation is based on distances rather than on projections. We study the geometry of such a representation and construct computational algorithms for the estimation of parameters and the calculation of prediction regions. Nominal logistic biplots extend both MCA and LTA in the sense that they give a graphical representation for LTA similar to the one obtained in MCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albert A, Anderson JA (1984) On the existence of maximum likelihood estimates in logistic regression models. Biometrika 71(1):1–10

    Article  MathSciNet  MATH  Google Scholar 

  • Baker FB (1992) Item response theory. Parameter estimation techniques, Marcel Dekker, New York

    MATH  Google Scholar 

  • Bock R, Aitkin M (1981) Marginal maximum likelihood estimation of item parameters: application of an em algorithm. Psychometrika 46(4):443–459

    Article  MathSciNet  Google Scholar 

  • Browne RP, McNicholas PD (2013) Estimating common principal components in high dimensions. Adv Data Anal Classif 8(2):217–226

    Article  MathSciNet  Google Scholar 

  • Bull SB, Mak C, Greenwood CM (2002) A modified score function for multinomial logistic regression. Comput Stat Data Anal 39:57–74

    Article  MATH  Google Scholar 

  • Chalmers RP (2012) Mirt: a multidimensional item response theory package for the r environment. J Stat Softw 48(6):1–29

    Article  Google Scholar 

  • De Leeuw J (2006) Principal component analysis of binary data by iterated singular value decomposition. Comput Stat Data Anal 50(1):21–39

    Article  MathSciNet  MATH  Google Scholar 

  • Demey J, Vicente-Villardón JL, Galindo MP, Zambrano A (2008) Identifying molecular markers associated with classification of genotypes using external logistic biplots. Bioinformatics 24(24):2832–2838

    Article  Google Scholar 

  • Evans DG, Jones SM (1987) Detecting Voronoi (area of influence) polygons. Math Geol 19(6):523–537

    Article  Google Scholar 

  • Firth D (1993) Bias reduction of maximum likelihood estimates. Biometrika 80(1):27–38

    Article  MathSciNet  MATH  Google Scholar 

  • Gabriel KR (1971) The biplot graphic display of matrices with application to principal component analysis. Biometrika 58(3):453–467

    Article  MathSciNet  MATH  Google Scholar 

  • Gabriel KR (1998) Generalised bilinear regresin. Biometrika 85(3):689–700

    Article  MathSciNet  MATH  Google Scholar 

  • Gabriel KR, Zamir S (1979) Lower rank approximation of matrices by least squares with any choice of weights. Technometrics 21(4):489–498

    Article  MATH  Google Scholar 

  • Gallego-Álvarez I, Vicente-Villardón JL (2012) Analysis of environmental indicators in international companies by applying the logistic biplot. Ecol Indic 23:250–261

    Article  Google Scholar 

  • Gower J, Hand D (1996) Biplots. Monographs on statistics and applied probability, vol 54. Chapman and Hall, London, p 277

    MATH  Google Scholar 

  • Groenen PJ, Le Roux NJ, Gardner-Lubbe S (2015) Spline-based nonlinear biplots. Adv Data Anal Classif 9(2):219–238

    Article  MathSciNet  Google Scholar 

  • Hartvigsen D (1992) Recognizing Voronoi diagrams with linear programming. ORSA J Comput 4:369–374

    Article  MathSciNet  MATH  Google Scholar 

  • Heinze G, Schemper M (2002) A solution to the problem of separation in logistic regresion. Stat Med 21:2409–2419

    Article  Google Scholar 

  • Hernández JC, Vicente-Villardón JL (2013) Nominal logistic Biplot: Biplot representations of categorical data. University of Salamanca. Department of Statistics. http://CRAN.R-project.org/package=NominalLogisticBiplot,Rpackage,version0.1

  • Hron, K., Brito, P., Filzmoser, P. (2016) Exploratory data analysis for interval compositional data. Adv Data Anal Classif doi:10.1007/s11634-016-0245-y (in press)

  • Jongman RHG, Ter Braak CJF, Tongeren OFRV (1987) Data analysis in community and landscape ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Le Cessie S, Van Houwelingen J (1992) Ridge estimators in logistic regression. Appl Stat 41(1):191–201

    Article  MATH  Google Scholar 

  • Lee S, Huand J, Hu J (2010) Sparse logistic principal component analysis for binary data. Ann Appl Stat 4(3):21–39

    Article  MathSciNet  Google Scholar 

  • Meier L, van de Geer S, Buhlmann P (1984) The group lasso for logistic regression. J R Stat Soc 70(1):53–71

    Article  MathSciNet  MATH  Google Scholar 

  • Schoenberg F, Ferguson T, Li C (2003) Inverting dirichlet tesselations. Comput J 46(1):76–83

    Article  MATH  Google Scholar 

  • Scrucca L (2014) Graphical tools for model-based mixture discriminant analysis. Adv Data Anal Classif 8:147–165

    Article  MathSciNet  Google Scholar 

  • Vicente-Galindo P, de Noronha Vaz T, Nijkamp P (2011) Institutional capacity to dynamically innovate: an application to the Portuguese case. Technol Forecast Soc Change 78(1):3–12

    Article  Google Scholar 

  • Vicente-Villardón JL (2010) MULTBIPLOT: a package for multivariate analysis using Biplots. University of Salamanca. Department of Statistics. http://biplot.usal.es/ClassicalBiplot/index.html

  • Vicente-Villardón JL, Galindo MP, Blázquez-Zaballos A (2006) Logistic biplots. In: Greenacre M, Blasius J (eds) Multiple Correspondence analysis and related methods. Chapman & Hall/CRC Press, London, pp 503–521

    Chapter  Google Scholar 

  • Yamashita N, Mayekawa SI (2015) A new biplot procedure with joint classification of objects and variables by fuzzy c-means clustering. Adv Data Anal Classif 9(3):243–266

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referees and the editor very much for their careful reading of our manuscript and their valuable comments and suggestions that have improved significantly the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio César Hernández-Sánchez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Sánchez, J.C., Vicente-Villardón, J.L. Logistic biplot for nominal data. Adv Data Anal Classif 11, 307–326 (2017). https://doi.org/10.1007/s11634-016-0249-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11634-016-0249-7

Keywords

Mathematics Subject Classification

Navigation