Skip to main content

Advertisement

Log in

Performance of S-CO2 Brayton Cycle and Organic Rankine Cycle (ORC) Combined System Considering the Diurnal Distribution of Solar Radiation

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

This paper researches the performance of a novel supercritical carbon dioxide (S-CO2) Brayton cycle and organic Rankine cycle (ORC) combined system with a theoretical solar radiation diurnal distribution. The new system supplies all solar energy to a S-CO2 Brayton cycle heater, where heat releasing from the S-CO2 cooler is stored in the thermal storage system which is supplied to the ORC. Therefore, solar energy is kept at a high temperature, while at the same time the thermal storage system temperature is low. This paper builds a simple solar radiation diurnal distribution model. The maximum continuous working time, mass of thermal storage material, and parameter variations of the two cycles are simulated with the solar radiation diurnal distribution model. 10 organic fluids and 5 representative thermal storage materials are compared in this paper, with the mass and volume of these materials being shown. The longer the continuous working time is, the lower the system thermal efficiency is. The maximum continuous working time can reach 19.1 hours if the system provides a constant power output. At the same time, the system efficiency can be kept above 38% for most fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Quoilin S., Orosz M., Hemond H., et al., Performance and design optimization of a low–cost solar organic Rankine cycle for remote power generation. Solar Energy, 2011, 85(5): 955–966.

    Article  ADS  Google Scholar 

  2. Delgado–Torres A.M., García–Rodríguez L., Design recommendations for solar organic Rankine cycle (ORC)–powered reverse osmosis (RO) desalination. Renewable and Sustainable Energy Reviews, 2012, 16(1): 44–53.

    Article  Google Scholar 

  3. Dunn R.I., Hearps P.J., Wright M.N., Molten–salt power towers: newly commercial concentrating solar storage. Proceedings of the IEEE, 2012, 100(2): 504–515.

    Article  Google Scholar 

  4. Chan C.W., Ling–Chin J., Roskilly A.P., A review of chemical heat pumps, thermodynamic cycles and thermal energy storage technologies for low grade heat utilisation. Applied thermal engineering, 2013, 50(1): 1257–1273.

    Article  Google Scholar 

  5. Niedermeier K., Flesch J., Marocco L., et al., Assessment of thermal energy storage options in a sodium–based CSP plant. Applied Thermal Engineering, 2016, 107: 386–397.

    Article  Google Scholar 

  6. Brosseau D., Edgar M., Kelton J.W., et al., Testing of thermocline filler materials and molten–salt heat transfer fluids for thermal energy storage systems in parabolic trough power plants. ASME 2004International Solar Energy Conference. American Society of Mechanical Engineers, 2004, pp.: 587–595.

    Google Scholar 

  7. Burgaleta J., Arias S., Ramirez D., Gemasolar, the first tower thermosolar commercial plant with molten salt storage. SolarPA–CES 2012International Conference, Marrakech, Morocco, Sept. 2012, pp.: 11–14.

    Google Scholar 

  8. Zeng C.L., Wang W., Wu W.T., Electrochemical impedance models for molten salt corrosion. Corrosion Science, 2001, 43(4): 787–801.

    Article  Google Scholar 

  9. Lee J., Lee J.I., Yoon H.J., et al., Supercritical carbon dioxide turbomachinery design for water–cooled small modular reactor application. Nuclear Engineering and Design, 2014, 270: 76–89.

    Article  Google Scholar 

  10. Ahn Y., Lee J.I., Study of various Brayton cycle designs for small modular sodium–cooled fast reactor. Nuclear Engineering and Design, 2014, 276: 128–141.

    Article  Google Scholar 

  11. Chacartegui R., De Escalona J.M.M., Sánchez D., et al., Alternative cycles based on carbon dioxide for central receiver solar power plants. Applied Thermal Engineering, 2011, 31(5): 872–879.

    Article  Google Scholar 

  12. Singh R., Miller S.A., Rowlands A.S., et al., Dynamic characteristics of a direct–heated supercritical carbon–dioxide Brayton cycle in a solar thermal power plant. Energy, 2013, 50: 194–204.

    Article  Google Scholar 

  13. Turchi C.S., Ma Z., Neises T.W., et al., Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems. Journal of Solar Energy Engineering, 2013, 135(4): 041007.

    Article  Google Scholar 

  14. Turchi C.S., Ma Z., Dyreby J., Supercritical carbon dioxide power cycle configurations for use in concentrating solar power systems. ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2012, pp.: 967–973.

    Google Scholar 

  15. Garg P., Kumar P., Srinivasan K., Supercritical carbon dioxide Brayton cycle for concentrated solar power. The Journal of Supercritical Fluids, 2013, 76: 54–60.

    Article  Google Scholar 

  16. Besarati S.M., Goswami D.Y., Analysis of advanced supercritical carbon dioxide power cycles with a bottoming cycle for concentrating solar power applications. Journal of Solar Energy Engineering, 2014, 136(1): 010904.

    Article  Google Scholar 

  17. Gao W., Li H., Nie P., et al., Parameter and layout optimization of a high temperature solar combined cycle using low temperature thermal storage. Environmental Progress & Sustainable Energy, 2017, 36(4): 1234–1243.

    Article  Google Scholar 

  18. Gao W., Li H., Zhang Y., Yao M., Bai W., Jiang S., High temperature solar S–CO2 and ORC combined cycle with low temperature thermal storage. Proceedings of the CSEE, 2016, 36(12): 3256–3262. (in Chinese)

    Google Scholar 

  19. Chen Y., Zhang Y., Liu W., Li H., Simulation study on supercritical carbon dioxide thermal power system. Thermal Power Generation, 2017, 46(02): 22–27+41. (in Chinese)

    Google Scholar 

  20. Kimzey G., Supercritical CO2 Brayton cycles and their application as a bottoming cycle. EPRI Project Summary Webcast, September 7, 2012, pp.: 5.

    Google Scholar 

  21. Ideriah F.J.K., A model for calculating direct and diffuse solar radiation. Solar Energy, 1981, 26(5): 447–452.

    Google Scholar 

  22. Fang R., Ding L., Li T., Chen X., application technology of solar energy. China Agricultural Machinery Press, 1985, Beijing. (in Chinese)

    Google Scholar 

  23. Noone C.J., Torrilhon M., Mitsos A., Heliostat field optimization: A new computationally efficient model and biomimetic layout. Solar Energy, 2012, 86(2): 792–803.

    Article  ADS  Google Scholar 

  24. Atif M., Al–Sulaiman F.A., Energy and exergy analyses of solar tower power plant driven supercritical carbon dioxide recompression cycles for six different locations. Renewable and Sustainable Energy Reviews, 2017, 68: 153–167.

    Article  Google Scholar 

  25. Pacheco J.E., Reilly H.E., Kolb G.J., et al., Summary of the solar two test and evaluation program. Sandia National Labs., Albuquerque, NM (US); Sandia National Labs., Livermore, CA (US). 2000, No. SAND2000–0372C.

    Google Scholar 

  26. Tyner C.E., Sutherland J.P., Gould Jr W.R., Solar two: A molten salt power tower demonstration. Sandia National Labs., Albuquerque, NM (United States). 1995, No. SAND–95–1828C; CONF–951072–1.

    Google Scholar 

  27. Smith D.C., Rush E.E., Matthews C.W., et al., Report on the test of the molten–salt pump and valve loops. Sandia National Labs. Albuquerque, NM (United States). 1992, No. SAND–91–1747.

    Google Scholar 

  28. Zhao H.J., Design and Implementation of 100 MW of molten salt solar–thermal power tower systems. North China Electric Power University, 2017. (in Chinese)

    Google Scholar 

  29. Cao G., Zhang L., Pan D., Yang J., Economic analysis of load adjustment according to time–of–use electricity price. Chlor Alkali Industry, 2014, 9: 27–30 (in Chinese).

    Google Scholar 

  30. Yu X., Shu Y., Zhao H., Zhang C., Peak–valley time period partitioning model of social electricity cunsumption based on optimal threshold. SHAANXI ELECTRIC POWER, 2015, 43(12): 66–71 (in Chinese).

    Google Scholar 

Download references

Acknowledgement

The authors acknowledge the financial support provided by the National Natural Science Foundation of China (Grant No. 51706181, 51806172), the Postdoctoral Science Foundation of China (Grant No. 2017M613294XB), Key Programs of China Huaneng Group (Grant No. HNKJ15-H07) and Young Talent Programs of Shaanxi Province of China (Grant No. ZD-18-SST04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingyu Yao or Hongzhi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Yao, M., Chen, Y. et al. Performance of S-CO2 Brayton Cycle and Organic Rankine Cycle (ORC) Combined System Considering the Diurnal Distribution of Solar Radiation. J. Therm. Sci. 28, 463–471 (2019). https://doi.org/10.1007/s11630-019-1114-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-019-1114-8

Keywords

Navigation