Skip to main content
Log in

Comparison of Reynolds averaged Navier-Stokes based simulation and large-eddy simulation for one isothermal swirling flow

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

The flow structure of one isothermal swirling case in the Sydney swirl flame database was studied using two numerical methods. Results from the Reynolds-averaged Navier-Stokes (RANS) approach and large eddy simulation (LES) were compared with experimental measurements. The simulations were applied in two different Cartesian grids which were investigated by a grid independence study for RANS and a post-estimator for LES. The RNG k-ɛ turbulence model was used in RANS and dynamic Smagorinsky-Lilly model was used as the sub-grid scale model in LES. A validation study and cross comparison of ensemble average and root mean square (RMS) results showed LES outperforms RANS statistic results. Flow field results indicated that both approaches could capture dominant flow structures, like vortex breakdown (VB), and precessing vortex core (PVC). Streamlines indicate that the formation mechanisms of VB deducted from the two methods were different. The vorticity field was also studied using a velocity gradient based method. This research gained in-depth understanding of isothermal swirling flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gupta, A.K., Lilley, D.J., Syred, N.: Swirl flows. Abacus Press, Tunbridge Wells, Kent (1984)

    Google Scholar 

  2. Syred, N., Beér, J.M.: Combustion in swirling flows: A review. Combustion and Flame 23(2), 143–201 (1974)

    Article  Google Scholar 

  3. Lucca-Negro, O., O’Doherty, T.: Vortex breakdown: a review. Prog. Energy Combust. Sci. 27(4), 431–481 (2001)

    Article  Google Scholar 

  4. Syred, N.: A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl com bustion systems. Prog. Energy Combust. Sci. 32(2), 93–161 (2006). doi:10.1016/j.pecs.2005.10.002

    Article  Google Scholar 

  5. Al-Abdeli, Y.M., Masri, A.R.: Recirculation and flowfield regimes of unconfined non-reacting swirling flows. Experimental Thermal and Fluid Science 27(5), 655–665 (2003)

    Article  Google Scholar 

  6. Al-Abdeli, Y.M., Masri, A.R.: Precession and recirculation in turbulent swirling isothermal jets. Combust. Sci. Technol. 176(5–6), 645–665 (2004). doi:10.1080/0010 2200490427883

    Article  Google Scholar 

  7. Al-Abdeli, Y.M., Masri, A.R.: Stability characteristics and flowfields of turbulent non-premixed swirling flames. Combust. Theory Model. 7(4), 731–766 (2003)

    Article  MATH  Google Scholar 

  8. Kalt, P.A.M., Al-Abdeli, Y.M., Masri, A.R., Barlow, R.S.: Swirling turbulent non-premixed flames of methane: Flow field and compositional structure. Proc. Combust. Inst. 29, 1913–1919 (2002)

    Article  Google Scholar 

  9. Masri, A.R., Kalt, P.A.M., Barlow, R.S.: The compositional structure of swirl-stabilised turbulent nonpremixed flames. Combustion and Flame 137(1–2), 1–37 (2004). doi:10.1016/j.combustflame.2003.12.004

    Article  Google Scholar 

  10. Al-Abdeli, Y.A., Masri, A.R., Marquez, G.R., Starner, S.H.: Time-varying behaviour of turbulent swirling nonpremixed flames. Combustion and Flame 146(1–2), 200–214(2006). doi:10.1016/j.combustflame.2006.04.09

    Article  Google Scholar 

  11. Masri, A.R., Kalt, P.A.M., Al-Abdeli, Y.M., Barlow, R.S.: Turbulence-chemistry interactions in non-premixed swirling flames. Combust. Theory Model. 11(5), 653–673 (2007). doi:10.1080/13647830701213482

    Article  MATH  Google Scholar 

  12. Stein, O., Kempf, A.: LES of the Sydney swirl flame series: A study of vortex breakdown in isothermal and reacting flows. Proc. Combust. Inst. 31, 1755–1763 (2007). doi:10.1016/j.proci.2006.07.255

    Article  Google Scholar 

  13. Malalasekera, W., Dinesh, K., Ibrahim, S.S., Kirkpatrick, M.P.: Large eddy simulation of isothermal turbulent swirling jets. Combust. Sci. Technol. 179(8), 1481–1525 (2007). doi:10.1080/00102200701196472

    Article  Google Scholar 

  14. Kempf, A., Malalasekera, W., Ranga-Dinesh, K.K.J., Stein, O.: Large Eddy Simulations of Swirling Non-premixed Flames with Flamelet Models: A Comparison of Numerical Methods. Flow Turbul. Combust. 81(4), 523–561 (2008). doi:10.1007/s10494-008-9147-1

    Article  Google Scholar 

  15. Stein, O., Kempf, A.M., Janicka, J.: LES of the Sydney Swirl flame series: An initial investigation of the fluid dynamics. Combust. Sci. Technol. 179(1–2), 173–189 (2007). doi:10.1080/00102200600808581

    Article  Google Scholar 

  16. Olbricht, C., Ketelheun, A., Hahn, F., Janicka, J.: Assessing the Predictive Capabilities of Combustion LES as Applied to the Sydney Flame Series. Flow, Turbulence and Combustion 85(3), 513–547 (2011). doi: 10.1007/s10494-010-9300-5

    Article  Google Scholar 

  17. Masri, A.R.: Swirl flows and flames database. Sydney University website. http://sydney.edu.au/engineering/aeromech/thermofluids/swirl.htm (2006).

  18. Pope, S.B.: Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6, 24 (2004). doi:3510.1088/1367-2630/6/1/035

    Article  Google Scholar 

  19. Celik, I., Klein, M., Janicka, J.: Assessment Measures for Engineering LES Applications. Journal of Fluids Engineering-Transactions of the ASME 131(3) (2009). doi: 10.1115/1.3059703

  20. ANSYS FLUENT User’s Guide, Release 13.0. ANSYS, Inc., Canonsburg, PA. November 2010.

  21. ANSYS FLUENT Theory Guide, Release 13.0. ANSYS, Inc., Canonsburg, PA. November 2010.

  22. Kempf, A., Lindstedt, R.P., Janicka, J.: Large-eddy simulation of a bluff-body stabilized nonpremixed flame. Combustion and Flame 144(1–2), 170–189 (2006). doi:10.1016/j.combustflame.2005.07.006

    Article  Google Scholar 

  23. Syred, N., Beér, J.M., Combustion in swirling flows: A review, Combustion and Flame, 23(2), 143–201 (1974). doi:10.1016/0010-2180(74)90057-1.

    Article  Google Scholar 

  24. Ranga Dynes, K.K.J., Kirkpatrick, M.P.: Study of jet precession, recirculation and vortex breakdown in turbulent swirling jets using LES. Computers & Fluids 38(6), 1232–1242 (2009)

    Article  Google Scholar 

  25. Jeong, J., Hussain, F.: On the Identification of a Vortex. J. Fluid Mech. 285, 69–94 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Kær, S.K. Comparison of Reynolds averaged Navier-Stokes based simulation and large-eddy simulation for one isothermal swirling flow. J. Therm. Sci. 21, 154–161 (2012). https://doi.org/10.1007/s11630-012-0530-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-012-0530-9

Keywords

Navigation