Skip to main content
Log in

Thermal product of type-E fast response temperature sensors

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

This paper provides practical data for thermal product values of different scratched temperature sensors that can be used for accurate transient heat transfer measurements under hypersonic flow conditions. The effect of using different scratch techniques (abrasive papers and scalpel blades) to form the sensor’s junction is investigated. It was observed that the thermal product of a particular sensor depends on the Mach number, junction scratch technique, junction location and enthalpy conditions. It was demonstrated that using different scratched technique would produce different thermal product values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alkidas, A.C. (1980), Heat transfer characteristics of a spark ignition engine, J. of Heat Transfer, 102: 189–193.

    Article  Google Scholar 

  2. Alkidas, A.C. and Cole, R.M. (1985), Transient heat flux measurements in a divided chamber diesel engine, J. of Heat Transfer, 107: 439–444.

    Article  Google Scholar 

  3. Alkidas, A.C., Puzinauskas, P.V. and Peterson, R.C. (1990), Combustion and heat transfer studies in a spark-ignited multi valve optical engine, SAE Trans. J. of Engines, 99: 817–830.

    Google Scholar 

  4. Gatowski, J.A., Smith, M.K. and Alkidas, A.C. (1989), An experimental investigation of surface thermometry and heat flux, Exper. Therm. Fluid Sci., 2: 280–289.

    Article  Google Scholar 

  5. Lawton, B. (1987), Effect of compression and expansion on instantaneous heat transfer in reciprocating internal combustion engines, Proc. Instn. Mech. Engrs. Part A, J. of Power and Energy, 201(A3): 175–186.

    Article  Google Scholar 

  6. Oude Nijeweme, D. J., Kok, J. B., Stone, C. R., and Wyszynski, L. (2001), Unsteady in-cylinder heat transfer in a spark ignition engine: experiments and modeling, Proc. Instn Mech. Engrs. Part D J. of Automobile Engineering, 215: 747–760.

    Article  Google Scholar 

  7. Jessen, C., Vetter, M. and Gronig, H. (1993), Experimental studies in the Aachen hypersonic shock tunnel, Z. Flugwiss Weltraumforsch., 17: 73–81.

    Google Scholar 

  8. Gai, S.L. and Joe, W.S. (1992), Laminar heat transfer to blunt cones in high-enthalpy flows, J. Thermophysics Heat Transfer, 6: 433–438.

    Article  Google Scholar 

  9. Sanderson, S. R. and Sturtevant, B. (2002), Transient heat flux measurement using a surface thermocouple, Review of Scientific Instruments, 73(7): 2781–2788.

    Article  ADS  Google Scholar 

  10. Lawton, B. and Klingenberg, G., Transient Temperature in Engineering and Science, Oxford University Press, Oxford, 1996.

    Google Scholar 

  11. Chen, J.C. and Hsu, K.K. (1995), Heat transfer during liquid contact on superheated surfaces, J. of Heat Transfer, 117: 693–697.

    Article  Google Scholar 

  12. Lee, L., Chen, J.C. and Nelson, R.A. (1982), Surface probe for measurement of liquid contact in film transition boiling on high temperature surfaces, Review of Scientific Instruments, 53(9): 1472–1476.

    Article  ADS  Google Scholar 

  13. Lee, L.Y.W., Chen, J.C. and Nelson, R.A. (1985), Surface probe for measurement of liquid contact in film transition boiling on high temperature surfaces, J. of Heat Mass Transfer, 28: 1415–1423.

    Article  Google Scholar 

  14. Bendersky, D. (1953), A special thermocouple for measuring transient temperatures, Mech. Eng., 75(2): 117–121.

    Google Scholar 

  15. Kovas, A. and Mesler, R.B. (1964), Making and testing small surface thermocouples for fast response, Review of Scientific Instruments, 35(4): 485–488.

    Article  ADS  Google Scholar 

  16. Ongkiehong, L. and Van Dujin, J. (1960), Construction of a thermocouple for measuring surface temperatures, J. Scientific Instruments, 37: 221–222.

    Article  ADS  Google Scholar 

  17. Mohammed, H. A., Salleh, H. and Yusoff, M. Z. (2010), Fast response surface temperature sensor for hypersonic vehicles, Instruments Experimental Technique, 53(1): 153–159.

    Article  Google Scholar 

  18. Kinzie, P. A., Thermocouple Temperature Measurement, John Wiley & Sons Inc., NY, 1973.

    Google Scholar 

  19. Raznjevic, K., Handbook of Thermodynamics Tables and Charts, Mc-Graw Hill, New York, 1976.

    Google Scholar 

  20. Mohammed, H. A., Salleh, H. and Yusoff, M. Z. (2007), The transient response for different types of erodable surface thermocouples using finite element analysis, Thermal Science, 11(4): 49–64.

    Article  Google Scholar 

  21. Buttsworth, D. R. (2001), Assessment of effective thermal product of surface junction thermocouples on millisecond and microsecond time scales, Exper. Therm. Fluid Sci., 25(6): 409–420.

    Article  Google Scholar 

  22. Nanmac, Temperature Measurement Handbook, Vol. VIII. Framingham, MA: Nanmac Co. Publication, 1997.

    Google Scholar 

  23. Heichal, Y., Chandra, S. and Bordatchev, E. (2005), A fast response thin film thermocouple to measure rapid surface temperature changes, Exper. Therm. Fluid Sci., 30(2): 153–159.

    Article  Google Scholar 

  24. Sprinks, T. (1963), On the calibration of calorimeter heat transfer gauges, AIAA J., 1(2): 464–468.

    Article  ADS  Google Scholar 

  25. Lyons, P. R. A. and Gai, S. L. (1998), A method for the accurate determination of the thermal product (ρcκ)1/2 for thin film heat transfer or surface thermocouple gauges, J. Phys. E: Sci Instrum, 21: 445–448.

    Article  ADS  Google Scholar 

  26. Caldwell, F.R., 1962, Thermocouple Materials, in: C.W. Herzfeld (Ed.), “Applied Methods and instrument; temperature: Its measurement and control in science and industry, 3(2): 81–134, Reinhold, NY.

  27. Touloukian, Y.S., Specific Heat Metallic Elements and Alloys, in: Y.S. Touloukian (Ed.), Thermophysical Properties of Matter; Temperature Sensor RC Data Series, Vol.4, IFI/Plenum Press, NY 1970.

    Google Scholar 

  28. Touloukian, Y.S., Thermal Conductivity Metallic Elements and Alloys, in: Y.S. Touloukian (Ed.), Thermophysical Properties of Matter; Temperature Sensor RC Data Series, vol.1, IFI/Plenum Press, NY, 1970.

    Google Scholar 

  29. Roeser, W.F. and Dahl, I. A. (1958), Reference tables for iron constantan and copper constantan thermocouples, J. Research Natl. Bur. Standards, 20(337): 1080.

    Google Scholar 

  30. Anderson, J.D., Modern Compressible Flow with His torical Perspective, 3rd ed., Mc-Graw Hill, NY, 2004.

    Google Scholar 

  31. Zurcow, M. J. and Hoffman, J. D., Gas Dynamics, John Wiley & Sons Inc., NY, 1976.

    Google Scholar 

  32. White, F.M., Viscous Fluid Flow, 2nd ed., Mc-Graw Hill, NY, 1991.

    Google Scholar 

  33. Vargaftik, N.B., Vinogradov, Y.K. and Yargin, V.S., Handbook of Physical Properties of Liquids and Gases, 3rd ed., Begell House, NY, 1996.

    Google Scholar 

  34. Coleman, H.W. and Steele, W.G. (1995), Engineering application of experimental uncertainty analysis, AIAA J., 33: 1888–1896.

    Article  ADS  Google Scholar 

  35. Baines, N.C., Mee, D.J. and Oldfield, M.L.G. (1991), Uncertainty analysis in turbomachine and cascade testing, Int. J. of Engineering Fluid Mechanics, 4(4): 375–401.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammed, H.A., Salleh, H., Yusoff, M.Z. et al. Thermal product of type-E fast response temperature sensors. J. Therm. Sci. 19, 364–371 (2010). https://doi.org/10.1007/s11630-010-0395-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-010-0395-8

Keywords

Navigation