Skip to main content
Log in

Quantifying land degradation in the Zoige Basin, NE Tibetan Plateau using satellite remote sensing data

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Considerable efforts have been dedicated to desertification research in the arid and semi-arid drylands of central Asia. However, there are few quantitative studies in conjunction with proper qualitative evaluation concerning land degradation and aeolian activity in the alpine realm. In this study, spectral information from two Landsat-5 TM scenes (04.08.1994 and 28.07.2009, respectively) was combined with reference information obtained in the field to run supervised classifications of eight landscape types for both time steps. Subsequently, the temporal and spatial patterns of the alpine wetlands/grasslands evolutions in the Zoige Basin were quantified and assessed based on these two classification maps. The most conspicuous change is the sharp increase of ~627 km2 degraded meadow. Concerning other land-covers, shallow wetland increases ~107 km2 and aeolian sediments (mobile dunes and sand sheets) have an increase of ~30 km2. Considering the deterioration, an obvious decrease of ~440 km2 degraded wetland can be observed. Likewise, decrease of deep wetland (~78 km2), humid meadow (~80 km2) and undisturbed meadow (~88 km2) were determined. These entire evolution matrixes undoubtedly hint a deteriorating tendency of the Zoige Basin ecosystem, which is characterized by significantly declined proportion of intact wetlands, meadow, rangeland and a considerable increase of degraded meadow and larger areas of mobile dunes. In particular, not only temporal alteration of the land-cover categories, the spatial and topographical characteristics of the land degradation also deserves more attention. In the alpine rangelands, the higher terraces of the river channels along with their slopes are more liable to the degradation and desertification. This tendency has significantly impeded the nomadic and agriculture activities. The set of anthropozoogenic factors encompassing enclosures, overgrazing and trampling, rodent damaging and exceedingly ditching in the wetlands are assumed to be the main controlling mechanisms for the landscape degradation. A suite of strict protection policies is urgent and indispensable for self-regulation and restoration of the alpine meadow ecosystem. Controlling the size of livestock, less ditching in the rangeland, and the launching of a more strict nature reserve management by adjacent Ruoergai, Maqu and Hongyuan Counties would be practical and efficacious in achieving these objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertz J (2001) Introduction to Remote Sensing-Basics of the Aerial Satellite Image Interpretation. Darmstadt: WBG. pp 123–174. (In German)

    Google Scholar 

  • Bai JH, Lu QQ, Wang JJ, et al. (2013) Landscape pattern evolution processes of alpine wetlands and their driving factors in the Zoige Plateau of China. Journal of Mountain Science 10(1): 54–67. DOI: 10.1007/s11629-013-2572-1

    Article  Google Scholar 

  • Charman DJ, Beilman DW, Blaauw M, et al. (2013) Climaterelated changes in peatland carbon accumulation during the last millennium. Biogeosciences 10(2): 929–944. DOI: 10.5194/bg-10-929-2013

    Article  Google Scholar 

  • Chen FH, Bloemendal J, Zhang PZ, et al. (1999) An 800 ky proxy record of climate from lake sediments of the Zoige Basin, eastern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 151(4): 307–320. DOI: 10.1016/S0031-0182(99)00032-2

    Article  Google Scholar 

  • Chen FH, Dong GH, Zhang DJ, et al. (2015) Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3,600 B.P. Science 347(6219): 248–250. DOI: 10.1126/science.1259172

    Article  Google Scholar 

  • Chen H, Wu N, Gao YH, et al. (2009) Spatial variations on methane emissions from Zoige alpine wetlands of Southwest China. Science of the Total Environment 407(3): 1097–1104. DOI: 10.1016/j.scitotenv.2008.10.038

    Article  Google Scholar 

  • Congalton RG, Green K (2008) Assessing the accuracy of remotely sensed data: Principles and Practices. Boca Raton: CRC Press, Taylor & Francis Group. pp 55–107.

    Google Scholar 

  • Cui XF, Graf HF (2009) Recent land cover changes on the Tibetan Plateau: a review. Climatic Change 94(1): 47–61. DOI: 10.1007/s10584-009-9556-8

    Article  Google Scholar 

  • Dewey JF, Schackleton RM, Chen CF, et al. (1988) The tectonic evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society A 327(1594): 379–413

    Article  Google Scholar 

  • Dong ZB, Hu GY, Yan CZ, et al. (2010) Aeolian desertification and its causes in the Zoige Plateau of China’s Qinghai-Tibetan Plateau. Environmental Earth Science 59(8): 1731–1740. DOI: 10.1007/s12665-009-0155-9

    Article  Google Scholar 

  • Du MY, Kawashima S, Yonemura S, et al. (2004) Mutual influence between human activities and climate change in the Tibetan Plateau during recent years. Global and Planetary Change 41(3–4): 241–249. DOI: 10.1016/j.gloplacha.2004.01.010

    Article  Google Scholar 

  • Fassnacht FE, Li L, Fritz A (2015) Mapping degraded grassland on the eastern Tibetan Plateau with multi-temporal Landsat 8 data–where do the severely degraded areas occur? International Journal of Applied earth Observation and Geoinformation 42: 115–127. DOI: 10.1016/j.jag.2015.06.005

  • Guo CX, Luo F, Ding X, et al. (2013) Palaeoclimate reconstruction based on pollen records from Tangke and Riganqiao peat sections in the Zoige Plateau, China. Quaternary International 286: 19–28. DOI: 10.1016/j.quaint.2012.09.027

    Article  Google Scholar 

  • Guo XJ, Du W, Wang X, et al. (2013) Degradation and structure change of humic acids corresponding to water decline in Zoige peatland, Qinghai-Tibet Plateau. Science of the Total Environment 445/446: 231–236. DOI: 10.1016/j.scitotenv.2012.12.048

    Article  Google Scholar 

  • Harris RB (2010) Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes. Journal of Arid Environments 74(1): 1–12. DOI: 10.1016/j.jaridenv.2009.06.014

    Article  Google Scholar 

  • Hu GY, Dong ZB, Lu JF, et al. (2015) The developmental trend and influencing factors of aeolian desertification in the Zoige Basin, eastern Qinghai-Tibet Plateau. Aeolian Research 19(Part B): 275–281. DOI: 10.1016/j.aeolia.2015.02.002

    Article  Google Scholar 

  • Kottek M, Greiser J, Beck C, et al. (2006) World map of Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15: 259–263. DOI: 10.1127/0941-2948/2006/0130

    Article  Google Scholar 

  • Lehmkuhl F (1993) “Desertification” in the Basin of Zoige (Ruoergai Plateau), Eastern Tibet. Berliner Geographische Arbeiten 79: 82–105. (In German)

    Google Scholar 

  • Lehmkuhl F (1995) Geomorphic imprints of the Holocene and late Pleistocene climate change of the Eastern Tibetan Plateau. Göttinger Geographische Abhandlungen 102: 1–184. (In German)

    Google Scholar 

  • Lehmkuhl F (1997) Areal recording of land degradationg of the Zoige Basin (Eastern Tibetan Plateau) using Landsat-TM data. Göttinger Geographische Abhandlungen 100: 179–194. (In German)

    Google Scholar 

  • Lehmkuhl F, Böhner J, Stauch G (2003) Geomorphological landform and process regions in Central Asia. Petermanns Geographische Mitteilungen 147(H.5): 6–13. (In German)

    Google Scholar 

  • Lehmkuhl F, Liu SJ (1994) An outline of physical geography including Pleistocene glacier landforms of Eastern Tibet (Provinces Sichuan and Qinghai). In: Lehmkuhl F, Liu SJ (eds.), Landscape and Quaternary climatic changes in Eastern Tibet and surroundings. GeoJournal 34(1): 7–30. DOI: 10.1007/BF00813966

    Google Scholar 

  • Lehmkuhl F, Spönemann J (1994) Morphogenetic problems of the upper Huang He drainage basin. GeoJournal 34(1): 31–40. DOI: 10.1007/BF00813967

    Article  Google Scholar 

  • Li B, Dong SC, Jiang XB, et al. (2008) Analysis on the driving factors of grassland desertification in Zoige Wetland. Research of Soil and Water Conservation 15(3): 112–115. (InChinese)

    Google Scholar 

  • Li LS, Chen XG, Wang ZY, et al. (2010) Climate change and its regional difference over the Tibetan Plateau. Advance in Climate Change Research 6: 181–186. (InChinese)

    Google Scholar 

  • Li ZW, Wang ZY, Brierley G, et al. (2015) Shrinkage of the Ruoergai Swamp and changes to landscape connectivity, Qinghai-Tibet Plateau. Catena 126: 155–163. DOI: 10.1016/j.catena.2014.10.035

    Article  Google Scholar 

  • Lillesand TM, Kiefer RW, Chipman JW (2008) Remote sensing and image interpretation. New York: John Wiley & Sons. pp 193–329.

    Google Scholar 

  • Lu HY, Yi SW, Xu ZW, et al. (2013) Chinese deserts and sand fields in Last Glacial Maximum and Holocene Optimum. Chinese Science Bulletin 58(23): 2775–2783. DOI: 10.1007/s11434-013-5919-7

    Article  Google Scholar 

  • Mayaux P, Eva H, Brink A, et al. (2008) Remote sensing of landcover and land-use dynamics. In: Chuvieco E (eds.), Earth observation of global change. Alcala de Henares: Springer. pp 85–108.

    Chapter  Google Scholar 

  • Meinert C, Gudehus C (2013) “From Worse to Better”: Anti-Desertification Policies on the Tibetan Plateau in the Past Decades. In: Nature, Environment and Culture in East Asia-The Challenge of Climate Change, Leiden, Brill. pp 231–259.

    Google Scholar 

  • Miehe G, Miehe S, Böhner J, et al. (2014) How old is the human footprint in the world’s largest alpine ecosystem? A review of multiproxy records from the Tibetan Plateau from the ecologists’ viewpoint. Quaternary Science Reviews 86: 190–209. DOI: 10.1016/j.quascirev.2013.12.004

    Article  Google Scholar 

  • Niu SW, Ma LB, Zeng MM (2008) Effect of overgrazing on grassland desertification in Maqu County. Acta Ecologica Sinica 28(1): 145–153. (In Chinese)

    Google Scholar 

  • O’brian RM (2001) Subduction followed by collision: alpine and Himalayan examples. Physics of the Earth and Planetary Interiors 127(1–4): 277–291. DOI: 10.1016/S0031-9201(01)00232-1

    Google Scholar 

  • Pang AP, Li CH, Wang X, et al. (2010) Land use/cover change in response to driving forces of Zoige Country, China. Procedia Environmental Science 2: 1074–1082. DOI: 10.1016/j.proenv. 2010.10.119

    Article  Google Scholar 

  • Purkis S, Klemas V (2011) Remote sensing and global environmental change. West Sussex: John Wiley & Sons. pp 127–271.

    Book  Google Scholar 

  • Qiu J (2016) Trouble in Tibet, rapid changes in Tibetan grasslands are threatening Asia’s main water supply and the livelihood of nomads. Nature 529(7585): 142–145. DOI: 10.1038/529142a

    Article  Google Scholar 

  • Richards JA, Jia X (2006) Remote sensing digital image analysis. Berlin: Springer-Verlag. pp 193–328.

    Google Scholar 

  • Schlütz F, Lehmkuhl F (2009) Holocene climatic change and the nomadic Anthropocene in Eastern Tibet: palynological and geomorphological results from the Nianbaoyeze Mountains. Quaternary Science Reviews 28(15–16): 1449–1471. DOI: 10.1016/j.quascirev.2009.01.009

    Article  Google Scholar 

  • Schowengerdt RA (2007) Remote sensing, models and methods for image processing. Burlington: Elsevier. pp 391–473.

    Google Scholar 

  • Tafel A (1914) My Tibet trip: A study tour through the Northwest China and through Inner Mongolia into the Eastern Tibet. In: Union Deutsche, Band 2 Stuttgart, Berlin, Leipzig. (In German)

    Google Scholar 

  • Xiang S, Guo RQ, Wu N, Sun SC (2009) Current status and future prospects of Zoige Marsh in Eastern Qinghai-Tibet Plateau. Ecological Engineering 35(4): 553–562. DOI: 10.1016/j.ecoleng.2008.02.016

    Article  Google Scholar 

  • Yu KF, Hartmann K, Nottebaum V, et al. (2016) Discriminating sediment archives and sedimentary processes in the arid endorheic Ejina Basin, NW China using a robust geochemical approach. Journal of Asian Earth Sciences 119: 128–144. DOI: 10.1016/j.jseaes.2016.01.016

    Article  Google Scholar 

  • Yu KF, Lu HY, Lehmkuhl F, et al. (2013) A preliminary quantitative paleoclimate reconstruction of the dune fields of northern China during the Last Glacial Maximum and Holocene optimum. Quaternary Sciences 33(2): 293–302. (InChinese)

    Google Scholar 

  • Zeng YN, Feng ZD, Cao GC (2003) Land cover change and its environmental impact in the upper reaches of the Yellow River, Northeast Qinghai-Tibetan Plateau. Mountain Research and Development 23(4): 353–361. DOI: 10.1659/0276-4741(2003)023[0353:LCCAIE]2.0.CO;2

    Article  Google Scholar 

  • Zhao Y, Tang Y, Yu ZC, et al. (2014) Holocene peatland initiation, lateral expansion, and carbon dynamics in the Zoige Basin of the eastern Tibetan Plateau. The Holocene 24(9): 1137–1145. DOI: 10.1177/0959683614538077

    Article  Google Scholar 

  • Zhu ZD, Liu S, Di XM (1988) Desertification and rehabilitation in China. Lanzhou: International Centre for Education and Research on Desertification Control. p 222.

    Google Scholar 

Download references

Acknowledgements

The study was funded by the German Research Foundation (DFG) for the fieldwork and China Scholarship Council (201306190112). We sincerely appreciate the constructive discussion with Dr. G. Stauch regarding the methodology and language. Two anonymous reviewers are sincerely acknowledged for the constructive suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-feng Yu.

Additional information

http://orcid.org/0000-0001-5434-1386

http://orcid.org/0000-0002-6876-7377

http://orcid.org/0000-0002-7071-1073

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Kf., Lehmkuhl, F. & Falk, D. Quantifying land degradation in the Zoige Basin, NE Tibetan Plateau using satellite remote sensing data. J. Mt. Sci. 14, 77–93 (2017). https://doi.org/10.1007/s11629-016-3929-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-016-3929-z

Keywords

Navigation