Skip to main content
Log in

Mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradation

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

The mass-front velocities of granular flows results from the joint action of particle size gradations and the underlying surfaces. However, because of the complexity of friction during flow movement, details such as the slope-toe impedance effects and momentum-transfer mechanisms have not been completely explained by theoretical analyses, numerical simulations, or field investigations. To study the mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradations we conducted model experiments that recorded the motion of rapid and long-runout rockslides or avalanches. Flume tests were conducted using slope angles of 25°, 35°, 45°, and 55° and three particle size gradations. The resulting mass-front motions consisted of three stages: acceleration, velocity maintenance, and deceleration. The existing methods of velocity prediction could not explain the slowing effect of the slope toe or the momentum-transfer steady velocity stage. When the slope angle increased from 25° to 55°, the mass-front velocities dropped significantly to between 44.4% and 59.6% of the peak velocities and energy losses increased from 69.1% to 83.7% of the initial, respectively. The velocity maintenance stages occurred after the slope-toe and mass-front velocity fluctuations. During this stage, travel distances increased as the angles increased, but the average velocity was greatest at 45°. At a slope angle of 45°, as the median particle size increased, energy loss around the slope toe decreased, the efficiency of momentum transfer increased, and the distance of the velocity maintenance stage increased. We presented an improved average velocity formula for granular flow and a geometrical model of the energy along the flow line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baba HO, Peth S (2012) Large scale soil box test to investigate soil deformation and creep movement on slopes by Particle Image Velocimetry (PIV). Soil and Tillage. Research 125: 38–43. DOI: 10.1016/j.still.2012.05.021

    Google Scholar 

  • Cepeda J, Ch, Ch JA, et al. (2010) Procedure for the selection of runout model parameters from landslide back-analyses: application to the Metropolitan Area of San Salvador, El Salvador.. Landslides 7: 105–116. DOI: 10.1007/s10346-010-0197-9

    Article  Google Scholar 

  • Chen XZ (1994) Research on the strength of coarse grained soil and the interlocking force. Engineering. Mechanics 11(4): 56–63. (In Chinese)

    Google Scholar 

  • Chen HR, Kuo KJ, Chen YN, et al. (2011) Model tests for studying the failure mechanism of dry granular soil slopes. Engineering. Geology 119: 51–63. DOI: 10.1016/j.enggeo. 2011.02. 001

    Article  Google Scholar 

  • Dai ZL, Huang Y, Cheng HL, et al. (2014) 3D numerical modeling using smoothed particle hydrodynamics of flow-like landslide propagation triggered by the 2008 Wenchuan earthquake. Engineering Geology 180: 21–33. DOI: 10.1016/j. enggeo.2014.03.018

    Article  Google Scholar 

  • Davies TR, Mcsaveney MJ, Hodgson KA (1999) A fragmentation-spreading model for long-runout rock avalanches. Canadian Geotechnical Journal. 36: 1096–1110.

    Article  Google Scholar 

  • Davies TRH (1982) Spreading of rock avalanche debris by mechanical fluidization. Rock. Mech. 15(1): 9–24. DOI: 10.1016/0148-9062(82)91422-X

    Google Scholar 

  • Deline P (2009) Interactions between rock avalanches and glaciers in the Mont Blanc massif during the late Holocene. Quaternary Science. Reviews 28: 1070–1083. DOI: 101016/j. quascirev. 2008.09.025

    Google Scholar 

  • Devoli G, Blasio FVD, ElverhEl A, et al. (2009) Statistical Analysis of Landslide Events in Central America and their Run-out Distance. Geotechnical and Geological. Engineering 27: 23–42. DOI: 10.1007/s10706-008-9209-0

    Google Scholar 

  • Eisbacher GH (1979) Cliff collapse and rock avalanches (sturstroms) in the Machenzie Mountains, northwestern Canada. Canadian Geotechnical. Journal 16: 309–334.

    Google Scholar 

  • Evans SG, Hungr O, Clague JJ (2001) Dynamics of the 1984 rock avalanche and associated distal debris flow on Mount Cayley, British Columbia, Canada; implications for landslide hazard assessment on dissected volcanoes. Engineering. Geology 61(1): 29–51.

    Google Scholar 

  • Fahnestock RK (1978) Little Tahoma peak rockfalls and avalanches, Mount Rainier, Washington, USA. In: Voight B (Ed.), Rockslides and Avalanches. 1. Natural Phenomena. Elsevier, Amsterdam. pp 181–196.

    Chapter  Google Scholar 

  • Feng WK, He C, Shi YC, et al. (2009) Simulation analysis of formation mechanism of some complex and giant landslides using three-dimensional discrete elements, Rock and Soil. Mechanics 30(4): 1122–1126. (In Chinese)

    Google Scholar 

  • Gray JMNT, Tai YC, Noelle S (2003) Shock waves, dead zones and particle-free regions in rapid granular free-surface flows. Journal of Fluid. Mechanics 491: 161–181. DOI: 10.1017/ S0022112003005317

    Google Scholar 

  • Gray JMNT (2013) A hierarchy of particle-size segregation models: From polydisperse mixtures to depth-averaged theories. AIP Conference Proceedings 1542: 66–73. DOI: 10.1063/ 1.4811869

    Article  Google Scholar 

  • Gray JMNT, Gajjara P, Kokelaar P (2015) Particle-size segregation in dense granular avalanches. Comptes Rendus. Physique 16: 73–85. DOI: 10.1016/j.crhy.2015.01.004

    Article  Google Scholar 

  • Holsapple KA (2013) Modeling granular material flows: The angle of repose, fluidization and the cliff collapse problem. Planetary and Space Science 82-83: 11–26. DOI: 10.1016/ j.pss. 2013.03.001

    Article  Google Scholar 

  • Huang RQ, Xu Q (2008) Catastrophic landslides in China. Science Press, Beijing, China. pp 125–129. (In Chinese)

    Google Scholar 

  • Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canadian Geotechnical Journal 32: 610–623.

    Article  Google Scholar 

  • Hungr O (2006) Rock avalanche occurrence, process and modelling. Earth and Environ-mental. Science 49(4): 243–266.

    Google Scholar 

  • Hungr O, McDougall S (2009) Two numerical models for landslide dynamic analysis. Computers &. Geosciences, 35: 978–992. DOI: 10.1016/j.cageo.2007.12.003

    Google Scholar 

  • Kent PE (1966) The transport mechanism in catastrophic rock falls.. Geology 74: 79–83.

    Article  Google Scholar 

  • Kokelaara BP, Grahama RL, Gray JMNT, et al. (2014) Finegrained linings of leveed channels facilitate runout of granular flows. Earth and Planetary Science. Letters 385: 172–180. DOI: 10.1016/j.epsl.2013.10.043

    Google Scholar 

  • Kwan JSH, Sun HW (2006) An improved landslide mobility model. Canadian Geotechnical. Journal 43(5): 531–539. DOI: 10.1139/T06-010

    Google Scholar 

  • Li WC, Li HJ, Dai FC, et al. (2012) Discrete element modeling of a rainfall-induced flowslide Engineering Geology 149-150: 22–34. DOI: 10.1016/j.enggeo.2012.08.006

    Article  Google Scholar 

  • Linares-Guerrero E, Goujon C, Zenit R (2007) Increased mobility of bidisperse granular flows. Journal of Fluid. Mechanics 593: 475–504. DOI: 10.1017/S0022112007008932

    Google Scholar 

  • Liu ZN, Koyi HA, Swantesson JOH, et al. (2013) Kinematics and 3-D internal deformation of granular slopes: Analogue models and natural landslides. Journal of Structural. Geology 53: 27–42. DOI:10.1016/j.jsg.2013.05.010

    Google Scholar 

  • Lo CM, Lin ML, Tang CL, et al. (2011) A kinematic model of the Hsiaolin landslide calibrated to the morphology of the landslide deposit. Engineering Geology 123: 22–39. DOI: 10.1016/j.enggeo.2011.07.002

    Article  Google Scholar 

  • Manzella I, Labiouse V (2009) Flow experiments with gravel and blocks at small scale to investigate parameters and mechanisms involved in rock avalanches. Engineering. Geology 109: 146–158. DOI: 10.1016/j.enggeo.2008.11.006

    Google Scholar 

  • Marks B, Rognon P, Einav I (2012) Grainsize dynamics of polydisperse granular segregation down inclined planes. Journal of Fluid. Mechanics. 690: 499–511. DOI: 10.1017/ jfm.2011. 454

    Google Scholar 

  • Marks B, Valaulta A, Puzrin A, et al. (2013) Design of protection structures: the role of the grain size distribution. AIP Conference. Proceedings, 1542: 658–661. DOI: 10.1063/ 1.4812017

    Google Scholar 

  • Moro F, Faug T, Bellot H, et al. (2010) Large mobility of dry snow avalanches: Insights from small-scale laboratory tests on granular avalanches of bidisperse materials. Cold Regions Science and. Technology 62: 55–66. DOI: 10.1016/j. coldregions.2010.02.011

    Google Scholar 

  • Okada Y, Ochiai H (2008) Flow characteristics of 2-phase granular mass flows from model flume tests. Engineering. Geology 97: 1–14. DOI: 10.1016/j.enggeo.2007.10.004

    Google Scholar 

  • Okura Y, Kitahara H, Sammori T (2000) Fluidization in dry landslides. Engineering. Geology 56: 347–360.

    Google Scholar 

  • Phillips JC, Hogg AJ, Kerswell RR, et al. (2006) Enhanced mobility of granular mixtures of fine and coarse particles. Earth and Planetary Science Letters 246(3-4): 466–480. DOI: 10.1016/j.epsl.2006.04.007

    Article  Google Scholar 

  • Pirulli M (2010) Morphology and Substrate Control on the Dynamics of Flowlike Landslides. Journal of Geotechnical and Geoenvironmental. Engineering 136(2): 376–388. DOI: 10.1061/(ASCE)GT.1943-5606.0000221

    Google Scholar 

  • Pudasaini SP, Miller SA (2013) The hypermobility of huge landslides and avalanches. Engineering. Geology 157: 124–132. DOI: 10.1016/j.enggeo.2013.01.012

    Google Scholar 

  • Revellino P, Guadagno FM, Hungr O (2008) Morphological methods and dynamic modeling in landslide hazard assessment of the Campania Apennine carbonate slope.. Landslides 5: 59–70. DOI: 10.1007/s10346-007-0103-2

    Article  Google Scholar 

  • Sassa K (1988) Geotechnical model for the motion of landslides (Special lecture). Landslides, C. Bonnard, Editor, Proceedings, 5th International Symposium on. Landslides 1: 37–56.

    Google Scholar 

  • Sassa J, Nagai O, Solidum R, et al. (2010) An integrated model simulating the initiation and motion of earthquake and rain induced rapid landslides and its application to the 2006 Leyte landslide.. Landslides 7: 219–236. DOI: 10.1007/s10346-010-0230-z

    Article  Google Scholar 

  • Savage SB, Hunter K (1989) The motion of a finite mass of granular material down a rough incline. Journal of Fluid. Mechanics 199: 177–215.

    Google Scholar 

  • Scheidegger AE (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mechanics and Rock. Engineering 5: 231–236.

    Google Scholar 

  • Shi GH, Goodman RE (1989) Generalization of two-dimensional discontinuous deformation analysis for forward modeling. International Journal for Numerical and Analytical Methods in. Geomechanics 13(3): 59–80. DOI: 10.1002/nag. 1610130403

    Google Scholar 

  • Shreve RL (1968a) The Blackhawk landslide. Geological Society of America. Special 108: 47.

    Google Scholar 

  • Shreve RL (1968b) Leakage and fluidization in air-layer lubricated avalanches. Geological Society of America. Bulletin 79: 653–658.

    Google Scholar 

  • Sosio R, Crosta GB, Chen JH, et al. (2012) Modelling rock avalanche propagation onto glaciers. Quaternary Science. Reviews 47: 23–40. DOI: 10.1016/j.quascirev.2012.05.010

    Google Scholar 

  • Straub S (1997) Predictability of long runout landslide motion: implications from granular flow mechanics. Geologische. Rundschau. 86: 415–425. DOI: 10.1007/s005310050150

    Article  Google Scholar 

  • Tai YC, Kuo CY (2008) A new model of granular flows over general topography with erosion and deposition. Acta Mechanica 199: 71–96. DOI: 10.1007/s00707-007-0560-7

    Article  Google Scholar 

  • Tai YC, Lin YC (2008) A focused view of the behavior of granular flows down a confined inclined chute into the horizontal run-out zone. Physics of Fluids 20(12): 1–11. DOI: 10.1063/1.3033490

    Article  Google Scholar 

  • Willenberg H, Eberhardt E, Loew S, et al. (2009) Hazard assessment and runout analysis for an unstable rock slope above an industrial site in the Riviera valley. Switzerland.. Landslides 6: 111–116. DOI: 10.1007/s10346-009-0146-7

    Article  Google Scholar 

  • Wu AQ, Ding XL, Li HZ, et al. (2006) Numerical simulation of startup and whole failure process of qianjiangping landslide using discontinuous deformation analysis method. Chinese Journal of Rock Mechanics and. Engineering 25 (7): 1297–1303.(In Chinese)

    Google Scholar 

  • Xing AG, Ying YP (2009) Whole Course Analysis on Hydrokineties Mechanism of Touzhai Gully Landslide. Journal of Tongji University (Natural. Science) 37(4): 481–485. (In Chinese)

    Google Scholar 

  • Yang CM, Yu WL, Dong JJ, et al. (2014) Initiation, movement, and run-out of the giant Tsaoling Landslide-What can we learn from a simple rigid block model and a velocitydisplacement dependent friction law? Engineering. Geology 182: 158–181. DOI: 10.1016/j.enggeo.2014.08. 008

    Google Scholar 

  • Yang QQ, Cai F, Ugai K, et al. (2011) Some factors affecting mass-front velocity of rapid dry granular flows in a large flume. Engineering. Geology 122: 249–260. DOI: 10.1016/j. enggeo. 2011.06.006

    Google Scholar 

  • Yoichi O, Hikaru K, Toshiaki S, et al. (2000) The effects of rockfall volume on runout distance. Engineering. Geology 58: 109–124.

    Google Scholar 

  • Zaniboni F, Tinti S (2014) Numerical simulations of the 1963 Vajont landslide, Italy: application of 1D Lagrangian modeling. Natural. Hazards 70: 567–592. DOI: 10.1007/s11069-013-0828-2

    Article  Google Scholar 

  • Zhang M, Hu RL, Yin YP, et al. (2010) Study of transform mechanism of landslide-debris flow with ring shear test. Chinese Journal of Rock Mechanics and. Engineering 29(4): 822–832. (In Chinese)

    Google Scholar 

  • Zhang YB, Wang JM, Xu Q, et al. (2015) DDA validation of the mobility of earthquake-induced landslides. Engineering Geology 194: 38–51. DOI: 10.1016/j.enggeo.2014.08.024

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-yi Fan.

Additional information

http://orcid.org/0000-0001-9001-1819

https://orcid.org/0000-0003-2058-6419

https://orcid.org/0000-0003-4683-4898

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Xy., Tian, Sj. & Zhang, Yy. Mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradation. J. Mt. Sci. 13, 234–245 (2016). https://doi.org/10.1007/s11629-014-3396-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-014-3396-3

Keywords

Navigation