Skip to main content
Log in

Comparison of two PVS2-based procedures for cryopreservation of commercial sugarcane (Saccharum spp.) germplasm and confirmation of genetic stability after cryopreservation using ISSR markers

  • Cryopreservation
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Conservation of Saccharum spp. germplasm as ex situ collections of plants has a high cost, and in natural conditions, the plants remain exposed to pests, pathogens, and natural disasters. Long-term preservation of plant germplasm is important for agricultural biodiversity and food safety, so the aim of this study was to develop a cryogenic procedure for cryopreservation of sugarcane germplasm. The first study compared droplet vitrification and encapsulation-vitrification techniques for cryopreservation of in vitro shoot tips of Saccharum spp. variety Halaii. The best regeneration rate (70.9%) was obtained from 45-min PVS2 vitrification solution-treated shoot tips via the droplet vitrification technique. This technique was tested on two other Saccharum sp. varieties, and the best regeneration rates for varieties NG 57-024 and H 83-6179 were 63.3 and 76.3%, respectively. Shoots derived from cryopreserved shoot tip buds developed well-formed roots, and were easily acclimated to greenhouse conditions. The second study evaluated genetic stability of the cryopreserved varieties using ten inter-simple sequence repeat primers. A total of 211 (Halaii), 198 (H83-6179), and 201 (NG 57-024) reproducible bands, ranging from 125 to 5500 bp, were scored with this technique. One hundred genetic stability was detected from Halaii and H 83-6179 whereas 98.5% genetic stability was detected from varieties of NG 57-024. The PCR reactions showed that there was no crucial variation on genetic stability for all cryopreserved varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Ababneh SS, Karam NS, Shibli RA (2002) Cryopreservation of sour orange (Citrus aurantium L.) shoot tips. In Vitro Cell Dev Biol Plant 38:602–607

    Article  CAS  Google Scholar 

  • Barraco G, Sylvestre I, Engelmann F (2011) Comparing encapsulation-dehydration and droplet-vitrification for cryopreservation of sugarcane (Saccharum spp.) shoot tips. Sci Hortic 130:320–324

    Article  CAS  Google Scholar 

  • Benson EE (1999) Cryopreservation. In: Benson EE (ed) Plant conservation biotechnology. Taylor and Francis, London, pp 83–95

    Google Scholar 

  • Berding N, Roach BT (1987) Sugarcane improvement through breeding. In: Heinz DJ (ed) Developments in crop science. Elsevier, Amsterdam, pp 143–210

    Google Scholar 

  • Charoensub R, Hirai D, Sakai A (2004) Cryopreservation of in vitro-grown shoot tips of cassava by encapsulation-vitrification method. CryoLetters 25:51–58

    PubMed  Google Scholar 

  • Choudhary R, Chaudhury R, Malik SK, Kumar S, Pal D (2013) Genetic stability of mulberry germplasm after cryopreservation by two-step freezing technique. Afr J Biotechnol 12:5983–5993

    Article  CAS  Google Scholar 

  • Dereuddre J (1992) Cryopreservation of in vitro cultures of plant cells and organs by vitrification and dehydration. In: Dattee Y, Dumas C, Gallais A (eds) Reproductive biology and plant breeding. Springer, Berlin, pp 291–300

    Chapter  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Focus 12:13–15

    Google Scholar 

  • Engelmann F (1991) In vitro conservation of tropical plant germplasm—a review. Euphytica 57:227–243

    Article  Google Scholar 

  • Engelmann F (2004) Plant cryopreservation: progress and prospects. In Vitro Cell Dev Biol Plant 40:427–433

    Article  Google Scholar 

  • Gamez-Pastrana R, Martinez-Ocampo Y, Beristain CI, GonzalezArnao MT (2004) An improved cryopreservation protocol for pineapple apices using encapsulation-vitrification. Cryo Letters 25:405–414

    CAS  PubMed  Google Scholar 

  • Gonzalez Arnao MT, Engelmann F, Huet C, Urra C (1993) Cryopreservation of encapsulated apices of sugarcane: effect of freezing procedure and histology. CryoLetters 14:303–308

    Google Scholar 

  • Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. CryoLetters 25:3–22

    PubMed  Google Scholar 

  • Hirai D (2001) Studies on cryopreservation of vegetatively propagated crops by encapsulation vitrification method. Rep Hokkaido Pref Agric Exp Sta 99:1–58

    CAS  Google Scholar 

  • Hirai D, Sakai A (2003) Simplified cryopreservation of sweet potato [Ipomoea batatas (L.) Lam.] by optimizing conditions for osmoprotection. Plant Cell Rep 21:961–966

    Article  CAS  PubMed  Google Scholar 

  • Kaya E (2015) ISSR analysis for determination of genetic diversity and relationship in some Turkish olive (Olea europaea L) cultivars. Not Bot Horti Agrobot Cluj Napoca 43:96–99

    Google Scholar 

  • Kaya E, Alves A, Rodrigues L, Jenderek M, Hernandez-Ellis M, Ozudogru A, Ellis D (2013) Cryopreservation of Eucalyptus genetic resources. CryoLetters 34:608–618

    CAS  PubMed  Google Scholar 

  • Kaya E, Souza F, Yilmaz-Gokdogan E, Ceylan M, Jenderek M (2017) Cryopreservation of citrus seed via dehydration followed by immersion in liquid nitrogen. Turk J Biol 41:242–248

    Article  Google Scholar 

  • Kocsis JJ, Harkaway S, Santoyo MC, Snyder R (1968) Dimethyl sulfoxide: interactions with aromatic hydrocarbons. Science 160:427–428

    Article  CAS  PubMed  Google Scholar 

  • Lambardi M, Sharma KK, Thorpe TA (1993) Optimization of in vitro bud induction and plantlet formation from mature embryos of Aleppo pine (Pinus halepensis Mill.) In Vitro Cell Dev Biol Plant 29:189–199

    Article  Google Scholar 

  • Leunufna S, Keller ERJ (2003) Investigating a new cryopreservation protocol for yams (Dioscorea spp.) Plant Cell Rep 21:1159–1166

    Article  CAS  PubMed  Google Scholar 

  • Marascuilo LA, McSweeney M (1977) Non-parametric and distribution free methods for the social sciences. In: Marascuilo LA (ed) McSweeney M. Books/Cole Publication, Belmont, pp 141–147

    Google Scholar 

  • Martin C, González I, Kremer C, González-Benito ME (2014) Cryopreservation and genetic stability of shoot cultures in vegetatively propagated species: mint and chrysanthemum. Acta Hortic 1039:127–132

    Article  Google Scholar 

  • Martins-Lopes P, Lima-Brito J, Gomes S, Meirinhos J, Santos L, Guedes-Pinto H (2007) RAPD and ISSR molecular markers in Olea europaea L.: genetic variability and molecular cultivar identification. Genet Res Crop Evol 54:117–128

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ozudogru EA, Kaya E (2012) Cryopreservation of Thymus cariensis and T. vulgaris shoot tips: comparison of three vitrification-based methods. CryoLetters 33:363–375

    CAS  PubMed  Google Scholar 

  • Ozudogru EA, Kaya E, Kirdok E, Issever-Ozturk S (2011) In vitro propagation from young and mature explants of thyme (Thymus vulgaris and T. longicaulis) resulting in genetically stable shoots. In Vitro Cell Dev Biol Plant 47:309–320

    Article  Google Scholar 

  • Panis B, Piette B, Swennen R (2005) Droplet vitrification of apical meristems: a cryopreservation protocol applicable to all Musaceae. Plant Sci 168:45–55

    Article  CAS  Google Scholar 

  • Panis B, Swennen R, Engelmann F (2001) Cryopreservation of plant germplasm. Acta Hort 560:79–86

    Article  CAS  Google Scholar 

  • Paul H, Daigny G, Sangwan-Norreel BS (2000) Cryopreservation of apple (Malus×domestica Borkh.) shoot tips following encapsulation-dehydration or encapsulation-vitrification. Plant Cell Rep 19:768–774

    Article  CAS  Google Scholar 

  • Paunesca A (2009) Biotechnology for endangered plant conservation: a critical overview. Rom Biotech Letters 14:4095–4104

    Google Scholar 

  • Rao NK (2004) Plant genetic resources: advancing conservation and use through biotechnology. Afr J Biotechnol 3:136–145

    Google Scholar 

  • Reddy MP, Sarla N, Siddiq EA (2002) Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128:9–17

    Article  Google Scholar 

  • Rafique T, Yamamoto S, Fukui K, Mahmood Z, Niino T (2015) Cryopreservation of sugarcane using the V cryo-plate technique. CryoLetters 36:51–59

    PubMed  Google Scholar 

  • Rohlf FJ (1998) NTSYS-pc numerical taxonomy and multivariate analysis system version 2. 0. Exeter publications, New York, USA, pp 1–44

  • Saha S, Adhikari S, Dey T, Ghosh P (2016) RAPD and ISSR based evaluation of genetic stability of micropropagated plantlets of Morus alba L. variety S-1. Meta Gene 7:7–15

    Article  PubMed  Google Scholar 

  • Sakai A, Engelmann F (2007) Vitrification, encapsulation-vitrification and droplet-vitrification: a review. CryoLetters 28:151–172

    CAS  PubMed  Google Scholar 

  • Sakai A, Matsumato T, Hirai D, Charoensub R (2002) Survival of tropical apices cooled to −196°C by vitrification. In: Li PH, Palva ET (eds) Plant cold hardiness, gene regulation and genetic engineering. Kluwer Academic/Plenum Publishers, New York, pp 109–119

    Chapter  Google Scholar 

  • Shibli RA, Al-Juboory KH (2000) Cryopreservation of ‘Nabali’ olive (Olea europea L.) somatic embryos by encapsulation-dehydration and encapsulation-vitrification. CryoLetters 21:357–366

    CAS  PubMed  Google Scholar 

  • Souza FVD, Kaya E, de Jesus VL, de Souza EH, de Oliveira Amorim VB, Skogerboe D, Matsumoto T, Alves AAC, da Silva Ledo CA, Jenderek MM (2016) Droplet-vitrification and morphohistological studies of cryopreserved shoot tips of cultivated and wild pineapple genotypes. Plant Cell Tissue Organ Cult 124:351–360

    Article  CAS  Google Scholar 

  • Tannoury M, Ralambosoa J, Kaminsky M, Dereuddre J (1991) Cryopreservation by vitrification of alginate-coated carnation (Dianthus caryophyllus L.) cultured in vitro plantlets. C. R. Acad. Sci. Paris, pp 633–638

  • Towill LE, Bonnart R (2003) Cracking in a vitrification solution during cooling or warming does not effect growth of cryopreserved mint shoot tips. CryoLetters 24:341–346

    PubMed  Google Scholar 

  • Valles MP, Wang ZY, Montavon P, Potrykus I, Spangenberg G (1993) Analysis of genetic stability of plants regenerated trom suspension cultures and protoplasts of meadow rescue (Festuca pratensis Huds.) Plant Cell Rep 12:101–106

    Article  CAS  PubMed  Google Scholar 

  • Vijayan K (2005) Inter simple sequence repeat (ISSR) polymorphism and its application in mulberry genome analysis. Int J Indust Entomol 10:79–86

    Google Scholar 

Download references

Acknowledgements

This work was supported by Mugla Sitki Kocman University, Scientific Research Projects Coordination Unit (Mugla, Turkey, MSKU-BAP 16/021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ergun Kaya.

Additional information

Editor: Barbara Reed

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, E., Souza, F.V.D. Comparison of two PVS2-based procedures for cryopreservation of commercial sugarcane (Saccharum spp.) germplasm and confirmation of genetic stability after cryopreservation using ISSR markers. In Vitro Cell.Dev.Biol.-Plant 53, 410–417 (2017). https://doi.org/10.1007/s11627-017-9837-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-017-9837-2

Keywords

Navigation