Skip to main content
Log in

Disarming and sequencing of Agrobacterium rhizogenes strain K599 (NCPPB2659) plasmid pRi2659

  • Original Paper
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Agrobacterium rhizogenes strain K599 (pRi2659), a causative agent of hairy root disease, effectively induces hairy root formation in a variety of plant species, including numerous soybean (Glycine max) cultivars. Because Agrobacterium-mediated transformation of soybean remains challenging and labor intensive, K599 appeared a suitable progenitor for new agrobacteria strains for plant transformation. In this paper, we report the disarming and sequencing of pRi2659 and the usefulness of the resulting disarmed strain in plant transformation studies of Arabidopsis thaliana, maize (Zea mays), tomato (Lycopersicon esculentum), and soybean (G. max).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Akutsu, M.; Ishizaki, T.; and Sato, H. Transformation of the monocot Alstroemeria by Agrobacterium rhizogenes. Mol. Breeding 13, 69–78; 2004.

    Article  CAS  Google Scholar 

  • Alexeyev, M.F.; Shokolenko, I.N.; and Croughan, T.P. Improved antibiotic-resistance gene cassettes and omega elements for Escherichia coli vector construction and in vitro deletion/insertion mutagenesis. Gene 160, 63–67; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; and Lipman D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nuc. Acids Res. 25, 3389–3402; 1997.

    Article  CAS  Google Scholar 

  • Ausubel, F.M.; Brent, R.; Kingston, R.E.; Moore, D.D.; Seidman, J.G.; Smith, J.A.; and Stuhl, K. Current protocols in molecular biology, Vols. 1–3. John Wiley and Sons, New York; 1995.

    Google Scholar 

  • Bevan, M. Binary Agrobacterium vectors for plant transformation. Nuc. Acid Res. 12, 8711–8721; 1984.

    Article  CAS  Google Scholar 

  • Black, T.A.; Cai, Y.; and Wolk C.P. Spatial expression and autoregulation of hetR, a gene involved in the control of heterocyst development in Anabaena. Mol. Microbiol. 9, 77–84; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Bush, A.L.; and Pueppke, S.G. Characterization of an Unusual New Agrobacterium tumefaciens Strain from Chrysanthemum morifolium Ram. Appl. Environ. Microbiol. 57, 2468–2472; 1991.

    PubMed  CAS  Google Scholar 

  • Byrne, M.C.; McDonnel, R.E.; Wright, M.S.; and Carnes, M.G. Strain and cultivar specificity in the Agrobacterium-soybean interaction. Plant Cell Tiss. Org. Cult. 8, 3–15; 1987.

    Article  CAS  Google Scholar 

  • Cheng, M.; Lowe, B.A.; Spencer, T.M.; Ye, X.; and Armstrong, C.L. Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cell. Dev. Biol. Plant 40, 31–45; 2004.

    Article  Google Scholar 

  • Cho, H.J.; Farrand, S.K.; Noel, G.R.; and Widholm, J.M. High-efficiency induction of soybean hairy roots and propagation of the soybean cyst nematode. Planta 210, 195–204; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, A.H.; Sharrock, R.A.; and Quail, P.H. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol. 18, 675–689; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Christey, M.C. Transgenic crop plants using Agrobacterium rhizogenes-mediated transformation. In: Doran P.M. ed. Hairy roots: culture and application. Amsterdam: Harwood; 1997: 99–111.

    Google Scholar 

  • Clerot, D.; and Brevet, J. Complete nucleotide sequence of the T-DNA of the cucumopine type plasmide pRi2659. GenBank Accession No. AJ271050.1 (Unpublished); 2000.

  • Clough, S.J.; and Bent. A.F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Combard, A.; Brevet, J.; Borowski, D.; Cam, K.; and Tempé, J. Physical map of the T-DNA region of Agrobacterium rhizogenes strain NCPPB 2659. Plasmid 18, 70–75;1987.

    Article  PubMed  CAS  Google Scholar 

  • Depicker, A.; Stachel, S.; Dhaese, P.; Zambryski, P.; and Goodman, H.M. Nopaline synthase: transcript mapping and DNA sequence. J. Mol. Appl. Genet. 1, 499–512; 1982.

    Google Scholar 

  • Fu, H.; and Dooner, H.K. Cloning of large allele-specific NotI fragments from a partial BAC library in maize: isolation of a 230-kb contig of the bronze region. Genome Research 10, 866–873; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Gelvin, S.B. Crown Gall Disease and Hairy Root Disease: A sledgehammer and a tackhammer. Plant Physiol. 92, 281–285; 1990.

    PubMed  CAS  Google Scholar 

  • Gelvin, S.B.; and Liu, C.-N. Genetic manipulation of Agrobacterium tumefaciens strains to improve transformation of recalcitrant species. In: Gelving, S.B.; and Schilperoort, R.A., ed. Plant Molecular Biology Manual, 2nd. Dordrecht: Kluwer Academic Publishers; 1994: B4/1–B4/13.

    Google Scholar 

  • Hamill, J.D.; Rounsley, S.; Spencer, A.; Todd, G.; and Rhodes, M.J.C. The use of the polymerase chain reaction in plant transformation studies. Plant Cell Rep. 10, 221–224; 1991.

    Article  CAS  Google Scholar 

  • Hansen, G.; Larribe, M.; Vaubert, D.; Tempé, J.; Biermann, B.J.; Montoya, A.L.; Chilton, M.D.; and Brevet, J. Agrobacterium rhizogenes pRi8196 T-DNA: Mapping and DNA sequence of functions involved in mannopine synthesis and hairy root differentiation. Proc. Natl. Acad. Sci. USA 88, 7763–7767; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, G.; Tempé, J.; and Brevet, J. A T-DNA transfer stimulator sequence in the vicinity of the right border of pRi8196. Plant Mol. Biol. 20, 113–122; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Haughn, G.W.; Smith, J.; Mazur, B.; and Somerville, C. Transformation with a mutated Arabidopsis acetolactate synthase gene renders tobacco resistant to sulfonylurea herbicide. Mol. Gen. Genet. 211, 266–271; 1988.

    Article  CAS  Google Scholar 

  • Hodges, L.D.; Cuperus, J.; and Ream, W. Agrobacterium rhizogenes GALLS protein substitutes for Agrobacterium tumefaciens single-stranded DNA binding protein VirE2. J. Bac. 186, 3065–3077; 2004.

    Article  CAS  Google Scholar 

  • Hoekema, A.; Hirsch, P.R.; Hooykaas, P.J.J.; and Shilperoort, R.A. A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti plasmid. Nature 303, 179–180; 1983.

    Article  CAS  Google Scholar 

  • Hood, E.E.; Helmer, G.L.; Fraley, R.T.; and Chilton, M.D. The hypervirulence of A. tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J. Bacteriol. 168, 1291–1301; 1986.

    PubMed  CAS  Google Scholar 

  • Hood, E.E.; Fraley, R.T.; and Chilton, M.D. Virulence of A. tumefaciens strain A281 on legumes. Plant Physiol. 83, 529–534; 1987.

    PubMed  CAS  Google Scholar 

  • Hood, E.E.; Gelvin, S.B.; Melchers, L.S.; and Hoekema, A. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res. 2, 208–218; 1993.

    Article  CAS  Google Scholar 

  • Hooykaas, P.J.J.; and Beijersbergen, A.G.M. The virulence system of Agrobacterium tumefaciens. Ann. Rev. Phytopath. 32, 157–179; 1994.

    CAS  Google Scholar 

  • Huang, X.; and Madan, A. CAP3: A DNA sequence assembly program. Genomic Res. 9, 868–877; 1999.

    Article  CAS  Google Scholar 

  • Ingham, D.J.; Beer, S.; Money, S.; and Hansen, G. Quantitative real-time PCR assay for determining transgene copy number in transformed plants. Biotechniques 31, 132–140; 2001.

    PubMed  CAS  Google Scholar 

  • Ishida, Y.; Saito, H.; Ohta, S.; Hiei, Y.; Komari, T.; and Humaashiro, T. High efficiency transformation of maize (Zea mays L) mediated by Agrobacterium tumefaciens. Nat. Biotech. 14, 745–750; 1996.

    Article  CAS  Google Scholar 

  • Isogai, A.; Fukuchi, N.; Hayashi, M.; Kamada, H.; Harada, H.; and Suzuki, M. Mikimopine, an opine in hairy roots of tobacco induced by Agrobacterium rhizogenes. Phytochemistry. 29, 3131–3134; 1990.

    Article  CAS  Google Scholar 

  • Jarchow, E.; Grimsley, N.H.; and Hohn, B. virF, the host-range-determining virulence gene of Agrobacterium tumefaciens, affects T-DNA transfer to Zea mays. Proc. Natl. Acad. Sci. USA 88, 10426–10430; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Jefferson, R.A. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5, 387–405; 1987.

    Article  CAS  Google Scholar 

  • Koncz, C.; and Schell, J. The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 204, 383–396; 1986.

    Article  CAS  Google Scholar 

  • Kosugi, S.; Ohashi, Y.; Nakajima, K.; and Arai, Y. An improved assay for β-glucuronidase in transformed cells: methanol almost completely suppresses a putative endogenous β-glucuronidase activity. Plant Sci. 70, 133–140; 1990.

    Article  CAS  Google Scholar 

  • Lazo, G.R.; Stein, P.A.; and Ludwig, R.A. A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechniques 9, 963–967; 1991.

    Article  CAS  Google Scholar 

  • Ling, H.-Q.; Kriseleit, D.; and Ganal, M.W. Effect of ticarcillin/potassium clavulanate on callus growth and shoot regeneration in Agrobacterium tumefaciens-mediate transformation of tomato (Lycopersicon esculentum). Plant Cell Rep. 17, 843–847; 1998.

    Article  CAS  Google Scholar 

  • Margulies, M.; Egholm, M.; Altman, W.E.; Attiya, S.; Bader, J.S.; Bemben, L.A.; Berka, J.; Braverman, M.S.; Chen, Y.J.; Chen, Z.; Dewell, S.B.; Du, L.; Fierro, J.M.; Gomes, X.V.; Godwin, B.C.; He, W.; Helgesen, S.; Ho, C.H.; Irzyk, G.P.; Jando, S.C.; Alenquer, M.L.; Jarvie, T.P.; Jirage, K.B.; Kim, J.B.; Knight, J.R.; Lanza, J.R.; Leamon, J.H.; Lefkowitz, S.M.; Lei, M.; Li, J.; Lohman, K.L.; Lu, H.; Makhijani, V.B.; McDade, K.E.; McKenna, M.P.; Myers, E.W.; Nickerson, E.; Nobile, J.R.; Plant, R.; Puc, B.P.; Ronan, M.T.; Roth, G.T.; Sarkis, G.J.; Simons, J.F.; Simpson, J.W.; Srinivasan, M.; Tartaro, K.R.; Tomasz, A.; Vogt, K.A.; Volkmer, G.A.; Wang, S.H.; Wang, Y.; Weiner, M.P.; Yu, P.; Begley, R.F.; and Rothberg, J.M. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380; 2005.

    PubMed  CAS  Google Scholar 

  • McCormac, A. C.; Elliott, M. C.; and Chen, D. F. A simple method for the production of highly competent cells of Agrobacterium for transformation via electroporation. Mol. Biotech. 9, 155–159; 1998.

    Article  CAS  Google Scholar 

  • McCormick, S.; Niedermeyer, J.; Fry, J.; Barnason, A.; Horsch, R.; and Fraley, R. Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep. 5, 81–84; 1986.

    Article  CAS  Google Scholar 

  • Moriguchi, K.; Maeda, Y.; Satou, M.; Hardayani, N.S.N.; Kataoka, M.; Tanaka, N.; and Yoshida, K. The complete nucleotide sequence of a plant root-inducing (Ri) plasmid indicates its chimeric structure and evolutionary relationship between tumor-inducing (Ti) and symbiotic (Sym) plasmids in Rhizobiaceae. J. Mol. Biol. 307, 771–784; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Ni, M.; Cui, D.; Einstein, J.; Narasimhulu, S.; Vergara, C.; and Gelvin, S.B. Strength and tissue specificity of chimaeric promoters derived from the octopine and mannopine synthase genes. Plant J. 7, 661–676; 1995.

    Article  CAS  Google Scholar 

  • Nilsson, O.; and Olsson, O. Getting to the root: The role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Phys. Plantarium 100, 463–473; 1997.

    Article  CAS  Google Scholar 

  • Olhoft, P.M.; Bernal, L.M.; Grist, L.B.; Hill, D.S.; Mankin, S.L.; Toren, E.; Song, H.-S.; and Jones, T. A novel Agrobacterium rhizogenes-mediated transformation method of soybean [Glycine max (L.) Merrill] using primary-node explants from seedlings. In Vitro Cell. Dev. Biol. Plant (in press); 2007.

  • Ooms, G.; Hooyhaas, P.J.J.; van Veen, R.J.M.; van Beelen, P.; Regensburg, T.J.G.; and Schilperoort, R.A. Octopine Ti-plasmid deletion mutants of Agrobacterium tumefaciens with emphasis on the right side of the T-region. Plasmid 7, 15–29; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Owens, L.D.; and Cress, D.E. Genotypic Variability of Soybean Response to Agrobacterium Strains Harboring the Ti or Ri Plasmids. Plant Physiol. 77, 87–94; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Palanichelvam, K.; Oger, P.; Clough, S.J.; Cha, C.; Bent, A.F.; and Farrand, S.K. A Second T-Region of the Soybean-Supervirulent Chrysopine-Type Ti Plasmid pTiChry5, and Construction of a Fully Disarmed vir Helper Plasmid. Mol. Plant-Microbe Interact. 13, 1081–1091; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Rommens, C.M.; Bougri, O.; Yan, H.; Humara, J.M.; Owen, J.; Swords, K.; and Ye, J. Plant-derived transfer DNAs. Plant Physiol. 139, 1338–1349; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J.; Fritsch, E.F.; and Maniatis, T. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press; 1989.

    Google Scholar 

  • Sanger, F.; Nicklen, S.; and Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Savka, M.A.; Ravillion, B.; Noel, G.R.; and Farrand, S.K. Induction of hairy roots on cultivated soybean genotypes and their use to propagate the soybean cyst nematode. Phytopathology 80, 503–508; 1990.

    Article  Google Scholar 

  • Sawada, H.; Ieki, H.; Oyaizu, H.,; and Matsumoto, S. Proposal for rejection of A. tumefaciens and revised descriptions for the genus Agrobacterium and for Agrobacterium radiobacter and Agrobacterium rhizogenes. Internat. J. System. Bacteriol. 43, 694–702; 1993.

    Article  CAS  Google Scholar 

  • Shen, W.H.; Petit, A.; Guern, J.; and Tempé, J. Hairy roots are more sensitive to auxin than normal roots. Proc. Natl. Acad. Sci. USA 85, 3417–3421; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Shiomi, T.; Shirakawa, T.; Takeuchi, A.; Oizumi, T.; and Uematsu, S. Hairy root of melon caused by Agrobacterium rhizogenes biovar 1. Ann. Phytopath. Soc. Japan 53, 454–459; 1987.

    Google Scholar 

  • Simpson, R.B.; Spielmann, A.; Margossian, L.; and McKnight, T.D. A disarmed binary vector from Agrobacterium tumefaciens functions in Agrobacterium rhizogenes: frequent co-transformation of two distinct T-DNAs. Plant Mol. Biol. 6, 403–415; 1986.

    Article  CAS  Google Scholar 

  • Tepfer, D. Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37, 959–967; 1984.

    Article  PubMed  CAS  Google Scholar 

  • Torisky, R.S.; Kovacs, L.; Avdiushko, S.; Newman, J.D.; Hunt, A.G.; and Collins, G.B. Development of a binary vector system for plant transformation based on the supervirulent Agrobacterium tumefaciens strain Chry5. Plant Cell Rep. 17, 102–108; 1997.

    Article  CAS  Google Scholar 

  • Vancanneyt, G.; Schmidt, R.; O’Connor-Sanchez, A.; Willmitzer, L.; and Rocha-Sosa, M. Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol. Gen. Genet. 220, 245–250; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Vilaine, F.; and Casse-Delbart, F. Independent induction of transformed roots by the TL and TR regions of the Ri plasmid of agropine type Agrobacterium rhizogenes. Mol. Gen. Genet. 206, 17–23; 1987.

    Article  CAS  Google Scholar 

  • Weller, S.A.; Stead, D.E.; and Young, J.P.W. Acquisition of an Agrobacterium Ri plasmid and pathogenicity by other α-Proteobacteria in cucumber and tomato crops affected by root mat. Appl. Environ. Microbiol. 70, 2779–2785; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Wenck, A.R.; Quinn, M.; Whetten, R.W.; Pullman, G.; and Sederoff, R. High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol. Biol. 39, 407–416; 1999.

    Article  PubMed  CAS  Google Scholar 

  • White, F.F.; Taylor, B.H.; Huffman, G.A.; Gordon, M.P.; and Nester E.W. Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J. Bac. 164, 33–44; 1985.

    CAS  Google Scholar 

  • Zambryski, P.; Depicker, A.; Kruger, K.; and Goodman, H. Tumer induction by Agrobacterium tumefaciens: analysis of the boundaries of T-DNA. J. Mol. Appl. Genet. 1, 361–370; 1982.

    PubMed  CAS  Google Scholar 

  • Zupan, J.R.; and Zambryski, P. Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiol. 107, 1041–1047; 1995.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Michael Kock, Genichi Kakefuda, and Steven Evola for their support and input on this work and manuscript. We would also like to thank DNA Landmarks (http://www.dnalandmarks.ca) for handling the bulk of the Sanger sequencing reported here.

S. Luke Mankin and D. Steven Hill contributed equally to the reported work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Luke Mankin.

Additional information

Editor: P. Ozias-Akins

Electronic supplementary material

Below is the link to the electronic supplementary material.

11627_2007_9071_MOESM1_ESM.txt

Appendix

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mankin, S.L., Hill, D.S., Olhoft, P.M. et al. Disarming and sequencing of Agrobacterium rhizogenes strain K599 (NCPPB2659) plasmid pRi2659. In Vitro Cell.Dev.Biol.-Plant 43, 521–535 (2007). https://doi.org/10.1007/s11627-007-9071-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-007-9071-4

Keywords

Navigation