Skip to main content

Advertisement

Log in

Microbial hazards in plant tissue and cell cultures

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

A wide range of microorganisms (filamentous fungi, yeasts, bacteria, viruses and viroids) and micro-arthropods (mites and thrips) have been identified as contaminants in plant tissue cultures. Contaminant may be introduced with the explant, during manipulations in the laboratory or by micro-arthropod vectors. Contaminants may express themselves immediately or can remain latent for long periods of time. This often makes it difficult to identify the source of contamination. Disinfection protocols have now been developed for a wide range of plant species including those infected with viruses/viroids or endophytic bacteria. They may include the selection of pathogen-free donor plants or donor plant treatments such as thermotherapy. Also microbiological quality assurance systems (e.g. Hazard Analysis Critical Control Point; HACCP procedures) have been adapted to the needs of commercial plant tissue culture laboratories. These are aimed at, preventing the introduction of pathogens, into tissue cultures at establishment and in the laboratory. In established in vitro cultures preventative strategies have proved to be essential, since it is extremely difficult to eliminate environmental bacterial and fungal contaminants using, antibiotics and fungicides. In many cases anti-microbial treatments only inhibit contaminants and low levels of contamination persist. In particular, the use of antibiotics against Gram-negative bacteria (including plant pathogenic bacteria and Agrobacterium tumefaciens vector systems used in genetic engineering) has been shown frequently to be extremely difficult or unsuccessful. Detection of latent contamination may involve the use of general and semi-selective microbial growth media or serological and PCR-based molecular techniques for specific pathogens. However, it is often difficult to detect low numbers of latent bacterial contaminants (e.g. levels present following antibiotic treatment or when acidified plant media are used). This poses a particular risk in the production of transgenic plants where the elimination or detection of Agrobacterium tumefaciens-based vector systems cannot be guaranteed with the currently available methodologies. Recent research has also shown that there is a risk of the transmission of human pathogens in plant tissue cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrios, G. N. Plant pathology. London: Academic Press; 1990.

    Google Scholar 

  • Anonymous The oxoid manual. Basingstoke: Tumergraphic Ltd; 1982; 5.

  • Apostle, I.; Low, P. S.; Heinstein, P. Effect of age of cell suspension cultures on susceptibility to a fungal elicitor. Plant Cell Rep. 7:295–692; 1989.

    Google Scholar 

  • Barrett, C.; Cassells, A. C. An evaluation of antibiotics for the elimination of Xanthomonas campestris pv. Pelargonii (Brown) from Pelargonium x domesticum cv. Grand Slam explants in vitro. Plant Cell Tiss. Organ Cult. 36:169–175; 1994.

    Article  CAS  Google Scholar 

  • Barrett, C.; Cobb, E.; McNicol, R.; Lyon, G. A risk assessment study of plant genetic transformation using Agrobacterium and implications for analysis of transgenic plants. Plant Cell Tiss. Organ Cult. 47:135–144; 1997.

    Article  Google Scholar 

  • Berger, F.; Keetley, J.; Leifert, C. An improved surface disinfection method for shoot explants from Iris rhizomes infected with bacterial soft rot (Erwinia, carotovora). J. Hort. Sci., 69:491–494; 1994.

    Google Scholar 

  • Blake, J. Mites and thrips as bacterial and fungal vectors between plant tissue cultures. Acta Hortic. 225:163–166; 1988.

    Google Scholar 

  • Cassells A. C. Bacterial and bacteria-like contaminants of plant tissue cultures. Acta Hortic. 225:1988.

  • Cassells, A. C. Problems in tissue culture: culture contamination. In: Debergh, P. C.; Zimmerman, R. H., eds. Micropropagation: technology and application. Dordrecht: Kluwer Academic Publishers: 1991; 31–44.

    Google Scholar 

  • Cassells, A. C., ed. Pathogen and microbial contamination management in micropropagation. Dordrecht: Kluwer Academic Publishers; 1997.

    Google Scholar 

  • Cassells, A. C. Factors relevant to the use of ribavirin to eliminate viruses in vitro. In: Reuther, G., ed. Physiology and control of plant propagation in vitro. Luxembourg: CEC; 1998; 122–126.

    Google Scholar 

  • Cassells, A. C. Contamination detection and elimination. Encyclopedia of plant cell biology. Chichester: Wiley; in press a.

  • Cassells, A. C. Aseptic microhydroponics: a strategy to advance microplant development. Acta Hortic. 530:187–194; 2000.

    Google Scholar 

  • Cassells, A. C.; Curry, R. F. Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engeneers. Plant Cell Tiss. Organ Cult. submitted.

  • Cassells, A. C.; Doyle, B. M.; Curry, R. F. Methods and markers for quality assurance in micropropagation. Acta Hortic 530:2000; in press.

  • Cassells, A. C.; Harmey, M. A.; Carney, B. F.; McCarthy, E.; McHugh, A. Problems posed by cultivable bacterial endophytes in the establishment of axenic cultures of Pelargonium x domesticum: the use of Xanthomonas pelargonii-specific ELISA, DNA probes and culture indexing in the screening of antibiotic treated and untreated donor plants. Acta Hortic. 225:153–161; 1988.

    Google Scholar 

  • Cassells, A. C.; Walsh, C. Characteristics of Dianthus microplants grown in agar and polyurethane foam using air-tight and water-permeable vessel lids. In: Reuther, G., ed. Physiology and control of plant propagation in vitro. Luxembourg CEC; 1998; 122–126.

    Google Scholar 

  • Collins, C. H.; Allwood, M. C.; Bloomfield, S. F.; Fox, A. Disinfectants, their use and evaluation of effectiveness. London: Academic Press; 1981.

    Google Scholar 

  • Cooke, D. L.; Waites, W. M.; Leifert, C. Effect of Agrobacterium tumefaciens, Erwinia carotova, Pseudomonas syringae and Xanthomonas campestris on plant tissue cultures of Aster, Cheiranthus, Delphinium, Iris and Rosa, disease development in vivo as a result of latent infection in vitro. J. Plant. Dis. Protect 99:469–481; 1992.

    Google Scholar 

  • Danby, S.; Berger, F.; Howitt, D. J.; Wilson, A. R.; Dawson, S.; Leifert, C. Fungal contaminants of Primula, Coffea, Musa and Iris tissue cultures. In: Lumsden, P. J.; Nicholas, J. R.; Davies, W. J., eds. Physiology, growth and development of plants in culture. Dordrecht: Kluwer Academic Publishers; 1994; 397–403.

    Google Scholar 

  • Darvill, A. G.; Albersheim, P. Phytoalexins and their elicitors—a defense against microbial infection in plants. Annu. Rev. Plant Pathol. 35:243–275; 1984.

    Article  CAS  Google Scholar 

  • Daub, M. E. Tissue culture and the selection of resistance to pathogens. Annu. Rev. Phytopathol. 24:159–186; 1986.

    Article  Google Scholar 

  • Deimling, G.; Mollers, C. Aseptic handling of potato material during protoplast isolation and regeneration. Acta Hortic. 225:209–215; 1988.

    Google Scholar 

  • Falkiner, F. Antibiotics in plant tissue culture and micropropagation—what are we aiming at? In: Cassells, A. C., ed. Pathogen and microbial contamination management in micropropagation. Dordrecht; Kluwer Academic Publishers; 1997:155–160.

    Google Scholar 

  • Falkiner, F. R. The criteria for choosing an antibiotics for control of bacteria in plant tissue culture. Int. Soc. Plant Tiss. Cult. Newsletter 60:13–23; 1990.

    Google Scholar 

  • Fedotina, V. L.; Krylova, N. V. Ridding tobaccos of the mycoplasmic infection big bud by the method of tissue culturing. Dokl. Bot. Sci. 228:49–51; 1976.

    Google Scholar 

  • Gregor, P. H. The microbiology of atmosphere. Aylesbury: Pleonard Hill Books; 1973.

    Google Scholar 

  • Hadidi, A.; Khetarpal, R. K.; Koganezawa, H.; eds. Plant virus disease control. St. Paul: APS Press; 1998.

    Google Scholar 

  • Hammerschlag, Q.; Lui, Q.; Zimmerman, R. H.; Gercheva, P. Generating apple transformants free of Agrobacterium tumefaciens by vacuum infiltrating explants with an acidified medium and with antibiotics. Acta Hortic. 530; in press.

  • Herman, E. B. Non-axenic plant tissue culture: possibilities and opportunities. Acta Hortic. 280:112–117; 1990a.

    Google Scholar 

  • Herman, E. B. Bacterial contamination in micropropagation. Agricell Rep. 14:41–43; 1990b.

    Google Scholar 

  • Hill, S. A., ed. Methods in plant virology. Oxford: Blackwell Scientific Publications; 1984.

    Google Scholar 

  • Hofferbert, H.-R.: Untersuchungen zur Eliminierung von Bakterien durch die Meristemkultur von Kartoffel-Keimen am Beispiel der Bacterienringfaule (Clavibacter michiganensis subsp sepedonicus (Spieckermann and Kotthoff) Davies et al.). Magisterarbeit, University of Gottingen. Germany, 1990.

    Google Scholar 

  • Hoffmann, G. M., Schmutterer, H., Parasitare Krankheiten und Schadlinge an landwirtschaftlichen Kulturpflanzen. Stuttgart, Germany: Eugen Ulmer Verlag; 1983.

    Google Scholar 

  • Hoffman, P. N.; Death, J. E.; Coates, D. The stability of sodium hypochlorite solutions. In: Collins, C. H.; Allwood, M. C.; Bloomfield, S. J.; Fox, A.: eds. Disinfectants, their use and evaluation of effectiveness. London: Academic Press; 1981; 77–83.

    Google Scholar 

  • Hugo, W. B. Inhibition and destruction of the microbial cell. London: Academic Press; 1971.

    Google Scholar 

  • Jacoli, G. G. Sequential degeneration of mycoplasma-like bodies in plant tissue cultures infected with Aster yellows. Can. J. Bot. 56:133–140; 1978.

    Google Scholar 

  • Kelsey, J. C. The testing of sterilisers. Lancet 1:306–309; 1958.

    Article  PubMed  CAS  Google Scholar 

  • Kelsey, J. C. The testing of sterilizers 2 thermophilic spore papers. J. Clin. Pathol. 14:313–319; 1961.

    PubMed  CAS  Google Scholar 

  • Klocke, J. A.; Myers, P. Chemical control of thrips on cultured Simmondsia chinensis (Jojoba) shoots. Hort. Sci. 19:440; 1984.

    Google Scholar 

  • Laimer da Camara Machado, M.; Kummert, J.; Candresse, T.; Jeklmann, W.; Cassells, A. C.; Bertaccini, A.; van den Heuvel, J.F.J.M.; Davies, D.L. Health certification of rosaceous species based on disease-indexing of in vitro plants: validation of diagnosties and diagnostic strategies. In: Doyle, B. M.; Curry, R. F.; Cassells, A. C., eds. Abstracts of the ISHS Conference ‘Methods and Markers for Quality Assurance in Micropropagation’. Cork: National University of Ireland; 1999; 104–106.

    Google Scholar 

  • Leifert, C. Failure to detect the latent persistance of Agribacterium tumefaciens in plant tissue cultures of Aster hybrida L. ‘Pearl Star’ (Compositae) following medium acidification or antibiotic treatment. In Vitro Cell. Dev. Biol. Plant; submitted.

  • Leifert, C.; Berger, F.; Steward, G.S.A.B.; Waites, W. M. Plasmid profiles of Lactobacillus plantarum found as contaminants in Hemerocallis plant tissue cultures. Let. Appl. Microbiol. 19:377–379; 1994c.

    Google Scholar 

  • Leifert, C.; Camotta, H.; Waites, W. M. Effect of antibiotics on micropropagated plant cultures. Plant Cell Tiss. Organ Cult. 29:153–160; 1991c.

    Article  Google Scholar 

  • Leifert, C.; Camotta, H.; Wright, S. M.; Waites, B.; Cheyne, V. A.; Waites, W. M. Elimination of Lactobacillus plantarum, Corynebacterium spp., Staphylococcus saprophyticus and Pseudomonas paucimobilis from micropropagated Hemerocallis, Choisya and Delphinium cultures using antibioties. J. Appl. Bact. 71:307–330; 1991b.

    Google Scholar 

  • Leifert, C.; Morris, C.; Waites, W. M. Ecology of microbial saprophytes and pathogens in tissue cultured and field grown plants. CRC Crit. Rev. Plant Sci. 13:139–183; 1994a.

    Google Scholar 

  • Leifert, C.; Nicholas, J. R.; Waites, W. M. Yeast contaminants of micropropagated plant cultures. J. Appl. Bacteriol. 69:471–476; 1990.

    Google Scholar 

  • Leifert, C.; Ritchie, J.; Waites, W. M. Contaminants of plant tissue and cell cultures. World J. Microbiol. Biotechnol. 7:452–469; 1991a.

    Article  Google Scholar 

  • Leifert, C.; Waites, B.; Keetley, J. W.; Wright, S.; Nicholas, J. R.; Waites, W. M. Effect of medium acidification on filamentous fungi, yeasts and bacterial contaminants in Delphinium tissue cultures. Plant Cell Tiss. Organ Cult. 36:149–155; 1994b.

    Article  Google Scholar 

  • Leifert, C.; Waites, W. M. Bacterial growth in plant tissue cultures. J. Appl. Bacteriol. 72:460–466; 1992.

    Google Scholar 

  • Leifert, C.; Waites, W. M. Dealing with microbial contaminants in plant tissue culture, hazard analysis and critical control points. In: Lumsden, P. J.; Nicholas, J. R.; Davies W. J., eds. Physiology, growth and development of plants in culture. Wageningen: Kluwer Academic Publishers; 1994; 363–378.

    Google Scholar 

  • Leifert, C.; Waites, W. M.; Camotta, H.; Nicholas, J. R. Lactobacillus plantarum, a deleterious contaminant of plant tissue cultures. J. Appl. Bacteriol. 67:363–370; 1989b.

    Google Scholar 

  • Leifert, C.; Waites, W. M.; Nicholas, J. R. Bacterial contaminants of micropropagated plant cultures. J. Appl. Bact. 67:353–361; 1989a.

    Google Scholar 

  • Leifert, C.; Woodward, S. Laboratory contamination management, the requirement for microbiological quality assurance. Plant Cell Tiss. Organ Cult. 52:85–88; 1998.

    Article  Google Scholar 

  • Lelliot, R. A.; Stead, D. E., eds. Methods for the diaghosis of bacterial diseases in plants. Oxford: Blackwell Scientific Publications; 1987.

    Google Scholar 

  • Lilley, A.; Fry, J.; Bailey, M. In situ transfer of an exogenously isolated plasmid between Pseudomonas spp. in sugarbeet rhizosphere. Microbiology 140:27–33; 1994.

    Article  CAS  Google Scholar 

  • Long, R. D.; Curtin, T. F.; Cassells, A. C. An investigation of the effects of bacterial contaminants on potato nodal cultures. Acta Hortic. 225:83–92; 1988.

    Google Scholar 

  • Martin, G. C.; Miller, A. N.; Castle, L. A.; Morris, J. W.; Dandekar, A. M. Feasibility studies using β-glucuronidase as a gene fusion marker in apple, peach and radish. J. Am. Soc. Hort. Sci. 115:686–691; 1990.

    CAS  Google Scholar 

  • Matthews, R. E. F., ed. Plant virology. New York: Academic Press; 1991; 5.

    Google Scholar 

  • Möllers, C.; Sarkar, S. Regeneration of healthy plants from Cataranthus roseus infected with mycoplasma-like organisms through callus cultures. Plant Sci. 60:83–89; 1989.

    Article  Google Scholar 

  • O'Donnell, K. J. Molecular diagnostics: technical and economic issues. Acta Hortic. 530; in press.

  • Omura, T.; Wakimoto, S. Effect of plant hormones on tobacco mosaic virus concentration in tobacco tissue cultures. J. Fac. Agric. Kyushu Univ. 22:211–219; 1978.

    CAS  Google Scholar 

  • Pype, J.; Everaert, K.; Debergh, P. C. Contaminant by micro-arthropods. In: Cassells, A. C., ed. Pathogen and microbial contamination management in micropropagation. Dordrecht: Kluwer Academic Publishers; 1997; 259–266.

    Google Scholar 

  • Rafferty, S. M.; Williams, S.; Falkiner, F. R.; Cassells, A. C. Persistence of human food poisoning pathogens (Escherichia coli and Serratia marcescens) in micropropagated cabbage. Acta Hortic 530; in press.

  • Reustle, G.; Mann, M.; Heintz, C. Experience and problems with infections in tissue cultures of grapevine. Acta Hortic. 225:119–129; 1988.

    Google Scholar 

  • Rollo, F.; Covey, S. N.; Amici, A. Figwort mosaic virus DNA replicates in cultured Datura stramonium cells. J. Gen. Virol. 67:2227–2231; 1986.

    Article  CAS  Google Scholar 

  • Russell, A. D.; Hugo, W. B.; Ayliffe, G. A. J., eds. Principles and practice of disinfection, preservation and sterilisation. Oxford: Blackwell Scientific Publications; 1982.

    Google Scholar 

  • Sayegh, A. J.; Long, R. D. The use of Hortifoam substrate in a micropropagation system. In: Cassells, A. C., ed. Pathogen and microbial contamination management in micropropagation. Dordrecht: Kluwer Academic Publishers; 1997; 279–286.

    Google Scholar 

  • Schaad N. W. Identification of plant pathogenic bacteria. Am. Phytopath. Soc. St Paul; 1980.

  • Smith, I. M.; Dunez, J.; Lelliot, R. A.; Phillips, D. H.; Archer, S. A., eds. European handbook of plant diseases. Oxford: Blackwell Scientific Publications 1986.

    Google Scholar 

  • Stead, D. E. Detection and diagnosis of bacterial contaminants and pathogens in micropropagated plants. Acta Hortic. 530; in press.

  • Sykes, G. Disinfection and sterilisation. London: E&FN Spon Ltd; 1965.

    Google Scholar 

  • Thynn, M.; Wolff, A.; George, E.; Werner, D. Low concentrations of phytoalexins correlate with resistance in regenerated plants from meristem culture of Vicia faba L.S. Naturofrsch. C. Biosci. 44:237–242; 1989.

    CAS  Google Scholar 

  • Toyoda, H.; Oishi, Y.; Matsuda, Y.; Chatani, K.; Hirai, T. Resistance of cultured plant cells to tobacco mosaic virus. Phytopath. Z. 114:126–133; 1985.

    Google Scholar 

  • Ulrychova, M.; Petru, E. Elimination of mycoplasma in tobacco callus tissues Nicotiana glauca (GRAH) cultured in the presence of kinetin and IAA in the nutrient medium. Biol. Plant. 17:352–356; 1975.

    Google Scholar 

  • Walkey, D.G., ed. Applied plant virology. London: William Heinemann Ltd; 1985.

    Google Scholar 

  • Weber, J.; Schenck, G. Symptomlose Ausbreitung des Nabfauleerregers Erwinia carotovora an in vitro Pflanzen der Kartoffel. Arch. Phytopathologie und Pflanzenschutz, Berlin 28:396–402; 1988.

    Google Scholar 

  • Weller, R.; Leifert, C. Transmission of Trichophyton interdigitale via an intermediate plant host. Br. J. Dermatol. 135:656–657; 1996.

    PubMed  CAS  Google Scholar 

  • White, R. F.; Dumas, E.; Shaw, P.; Autoniw, J. F. The chemical induction of PR (b) proteins and resistance to TMV infection in tobacco. Antiviral Res. 6:177–185; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Zacharius, R. M.; Kalan, E. B. Isoflavonoid changes in soybean cell suspensions when challenged with intact bacteria or fungal elicitors. J. Plant. Physiol. 135:732–736; 1990.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Leifert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leifert, C., Cassells, A.C. Microbial hazards in plant tissue and cell cultures. In Vitro Cell.Dev.Biol.-Plant 37, 133–138 (2001). https://doi.org/10.1007/s11627-001-0025-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-001-0025-y

Key words

Navigation