Skip to main content

Advertisement

Log in

Heparin/endothelial cell growth supplement regulates matrix gene expression and prolongs life span of vascular smooth muscle cells through modulation of interleukin-1

  • Growth, Differentiation, And Senescence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Vascular smooth muscle cells produce and respond to interleukin-1, a cytokine which modifies inflammation-associated vascular activities including the synthesis of extracellular matrix proteins. We have established vascular smooth muscle cells culture conditions in which heparin, in the presence of endothelial cell growth supplement, promotes cell proliferation and inhibits interleukin-1 and matrix protein expression. To test whether interleukin-1 mediates growth and matrix modulation by heparin/endothelial cell growth supplement, vascular smooth muscle cells were transfected with an Epstein-Barr virus-derived expression vector designed to express interleukin-1 antisense transcripts. RNase protection and ELISA assays demonstrated a complete block of interleukin-1 transcription and protein synthesis. Northern blot analysis also showed that interleukin-1 antisense decreased the expression of matrix genes such as type I collagen, fibronectin, and decorin similar to downregulation after heparin/endothelial cell growth supplement treatment. In contrast, the expression of versican was not affected, indicating a selective suppression of matrix proteins. In addition, interleukin-1 antisense significantly prolonged the life span of vascular smooth muscle cells in culture. Our data suggest that heparin/endothelial cell growth supplement induces matrix remodeling and controls growth and senescence of vascular smooth muscle cells through down-regulation of interleukin-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amento, E. P.; Ehsani, N.; Palmer, H.; Libby, P. Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler. Thromb. 11:1223–1230; 1991.

    PubMed  CAS  Google Scholar 

  2. Bakouche, O.; Koff, W. C.; Brown, D. C.; Lachman, L. B. Interleukin 1 release by human monocytes treated with liposome-encapsulated lipopolysaccharide. J. Immunol. 139:1120–1126; 1987.

    PubMed  CAS  Google Scholar 

  3. Beasley, D.; Cohen, R. A.; Levinsky, N. G. Interleukin 1 inhibits contraction of vascular smooth muscle. J. Clin. Invest. 83:331–335; 1989.

    PubMed  CAS  Google Scholar 

  4. Bernard, M. P.; Kolbe, M.; Weil, D.; Chu, M. L. Human cellular fibronectin: comparison of the carboxyl-terminal portion with rat identifies primary structural domains separated by hypervariable regions. Biochemistry 24:2698–2704; 1985.

    Article  PubMed  CAS  Google Scholar 

  5. Bitterman, P. B.; Wewers, M. D.; Rennard, S. I.; Adelberg, S.; Crystal, R. G. Modulation of alveolar macrophage-driven fibroblast proliferation by alternative macrophage mediators. J. Clin. Invest. 77:700–708; 1986.

    PubMed  CAS  Google Scholar 

  6. Bonin, P. D.; Fici, G. J.; Singh, J. P. Interleukin-1 promotes proliferation of vascular smooth muscle cells in coordination with PDGF or a monocyte derived growth factor. Exp. Cell Res. 181:475–482; 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Chu, M. L.; Myers, J. C.; Bernard, M. P.; Ding, J. F.; Ramirez, F. Cloning and characterization of five overlapping cDNAs specific for the human pro alpha 1(I) collagen chain. Nucleic Acids Res. 10:5925–5934; 1982.

    Article  PubMed  CAS  Google Scholar 

  8. Chung, C. T.; Niemela, S. L.; Miller, R. H. One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc. Natl. Acad. Sci. USA 86:2172–2175; 1989.

    Article  PubMed  CAS  Google Scholar 

  9. Ciolino, H. P.; Vijayagopal, P.; Radhakrishnamurthy, B.; Berenson, G. S. Heparin stimulates proteoglycan synthesis by vascular smooth muscle cells while suppressing cellular proliferation [published erratum appears in Atherosclerosis 1993 Mar; 99(2):273]. Atherosclerosis 94:135–146; 1992.

    Article  PubMed  CAS  Google Scholar 

  10. Clowes, A. W.; Clowes, M. M. Kinetics of cellular proliferation after arterial injury. II. Inhibition of smooth muscle growth by heparin. Lab. Invest. 52:611–616; 1985.

    PubMed  CAS  Google Scholar 

  11. Cozzolino, F.; Torcia, M.; Aldinucci, D.; Ziche, M.; Almerigogna, F.; Bani, D.; Stern, D. M. Interleukin 1 is an autocrine regulator of human endothelial cell growth. Proc. Natl. Acad. Sci. USA 87:6487–6491; 1990.

    Article  PubMed  CAS  Google Scholar 

  12. Daum, G.; Hedin, U.; Wang, Y.; Wang, T.; Clowes, A. W. Diverse effects of heparin on mitogen-activated protein kinase-dependent signal transduction in vascular smooth muscle cells. Circ. Res. 81:17–23; 1997.

    PubMed  CAS  Google Scholar 

  13. Dinarello, C. A.; Savage, N. Interleukin-1 and its receptor. Crit. Rev. Immunol. 9:1–20; 1989.

    PubMed  CAS  Google Scholar 

  14. Dinarello, C. A.; Wolff, S. M. The role of interleukin-1 in disease [published erratum appears in N. Engl. J. Med. 1993 Mar 11; 328(10):744]. N. Engl. J. Med. 328:106–113; 1993.

    Article  PubMed  CAS  Google Scholar 

  15. Garfinkel, S.; Brown, S.; Wessendorf, J. H.; Maciag, T. Post-transcriptional regulation of interleukin 1 alpha in various strains of young and senescent human umbilical vein endothelial cells. Proc. Natl. Acad. Sci. USA. 91:1559–1563; 1994.

    Article  PubMed  CAS  Google Scholar 

  16. Garfinkel, S.; Haines, D. S.; Brown, S.; Wessendorf, J.; Gillespie, D. H.; Maciag, T. Interleukin-1 alpha mediates an alternative pathway for the antiproliferative action of poly(I·C) on human endothelial cells. J. Biol. Chem. 267:24375–24378; 1992.

    PubMed  CAS  Google Scholar 

  17. Garfinkel, S.; Wessendorf, J. H.; Hu, X.; Maciag, T. The human diploid fibroblast senescence pathway is independent of interleukin-1 alpha mRNA levels and tyrosine phosphorylation of FGFR-1 substrates. Biochim. Biophys. Acta 1314:109–119; 1996.

    Article  PubMed  CAS  Google Scholar 

  18. Haskill, S.; Martin, G.; Van Le, L.; Morris, J.; Peace, A.; Bigler, C. F.; Jaffe, G. J.; Hammerberg, C.; Sporn, S. A.; Fong, S., et al. cDNA cloning of an intracellular form of the human interleukin 1 receptor antagonist associated with epithelium. Proc. Natl. Acad. Sci. USA 88:3681–3685; 1991.

    Article  PubMed  CAS  Google Scholar 

  19. Herbert, J. M.; Bono, F.; Lamarche, I.; Carmeliet, P. The inhibitory effect of heparin for vascular smooth muscle cell proliferation or migration is not mediated by u-PA and t-PA. Thromb. Res. 86:317–324; 1997.

    Article  PubMed  CAS  Google Scholar 

  20. Hoshi, H.; Kan, M.; Chen, J. K.; McKeehan, W. L. Comparative endocrinology-paracrinology-autocrinology of human adult large vessel endothelial and smooth muscle cells. In Vitro Cell. Dev. Biol. 24:309–320; 1988.

    Article  PubMed  CAS  Google Scholar 

  21. Ikeda, U.; Ikeda, M.; Oohara, T.; Kano, S.; Yaginuma, T. Mitogenic action of interleukin-1 alpha on vascular smooth muscle cells mediated by PDGF. Atherosclerosis 84:183–188; 1990.

    Article  PubMed  CAS  Google Scholar 

  22. Kato, S.; Muraishi, A.; Miyamoto, T.; Fox, J. C. Basic fibroblast growth factor regulates extracellular matrix and contractile protein expression independent of proliferation in vascular smooth muscle cells. In Vitro Cell. Dev. Biol. Anim. 34:341–346; 1998.

    Article  PubMed  CAS  Google Scholar 

  23. Kenagy, R. D.; Clowes, A. W. Regulation of baboon arterial smooth muscle cell plasminogen activators by heparin and growth factors. Thromb. Res. 77:55–61; 1995.

    Article  PubMed  CAS  Google Scholar 

  24. Kenagy, R. D.; Nikkari, S. T.; Welgus, H. G.; Clowes, A. W. Heparin inhibits the induction of three matrix metalloproteinases (stromelysin, 92-kD gelatinase, and collagenase) in primate arterial smooth muscle cells. J. Clin. Invest. 93:1987–1993; 1994.

    PubMed  CAS  Google Scholar 

  25. Kennedy, S. H.; Qin, H.; Lin, L.; Tan, E. M. Basic fibroblast growth factor regulates type I collagen and collagenase gene expression in human smooth muscle cells. Am. J. Pathol. 146:764–771; 1995.

    PubMed  CAS  Google Scholar 

  26. Kumar, S.; Tomooka, Y.; Noda, M. Identification of a set of genes with developmentally down-regulated expression in the mouse brain. Biochem. Biophys. Res. Commun. 185:1155–1161; 1992.

    Article  PubMed  CAS  Google Scholar 

  27. Leung, K.; Betts, J. C.; Xu, L.; Nabel, G. J. The cytoplasmic domain of the interleukin-1 receptor is required for nuclear factor-kappa B signal transduction. J. Biol. Chem. 269:1579–1582; 1994.

    PubMed  CAS  Google Scholar 

  28. Libby, P.; Ordovas, J. M.; Birinyi, L. K.; Auger, K. R.; Dinarello, C. A. Inducible interleukin-1 gene expression in human vascular smooth muscle cells. J. Clin. Invest. 78:1432–1438; 1986.

    PubMed  CAS  Google Scholar 

  29. Libby, P.; Warner, S. J.; Friedman, G. B. Interleukin 1: a mitogen for human vascular smooth muscle cells that induces the release of growth-inhibitory prostanoids. J. Clin. Invest. 81:487–498; 1988.

    Article  PubMed  CAS  Google Scholar 

  30. Libby, P.; Wyler, D. J.; Janicka, M. W.; Dinarello, C. A. Differential effects of human interleukin-1 on growth of human fibroblasts and vascular smooth muscle cells. Arteriosclerosis. 5:186–191; 1985.

    PubMed  CAS  Google Scholar 

  31. Loidl, H. R.; Brinker, J. M.; May, M.; Pihlajaniemi, T.; Morrow, S.; Rosenbloom, J.; Myers, J. C. Molecular cloning and carboxyl-propeptide analysis of human type III procollagen. Nucleic Acids Res. 12:9383–9394; 1984.

    Article  PubMed  CAS  Google Scholar 

  32. Loppnow, H.; Bil, R.; Hirt, S.; Schonbeck, U.; Herzberg, M.; Werdan, K.; Rietschel, E. T.; Brandt, E.; Flad, H. D. Platelet-derived interleukin-1 induces cytokine production, but not proliferation of human vascular smooth muscle cells. Blood 91:134–141; 1998.

    PubMed  CAS  Google Scholar 

  33. Loppnow, H.; Libby, P. Functional significance of human vascular smooth muscle cell-derived interleukin 1 in paracrine and autocrine regulation pathways. Exp. Cell Res. 198:283–290; 1992.

    Article  PubMed  CAS  Google Scholar 

  34. Lyons-Giordano, B.; Brinker, J. M.; Kefalides, N. A. Heparin increases mRNA levels of thrombospondin but not fibronectin in human vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 162:1100–1104; 1989.

    Article  PubMed  CAS  Google Scholar 

  35. Lyons-Giordano, B.; Conaway, H.; Kefalides, N. A. The effect of heparin on fibronectin and thrombospondin synthesis by human smooth muscle cells. Biochem. Biophys. Res. Commun. 148:1264–1269; 1987.

    Article  PubMed  CAS  Google Scholar 

  36. Maciag, T.; Cerundolo, J.; Ilsley, S.; Kelley, P. R.; Forand, R. An endothelial cell growth factor from bovine hypothalamus: identification and partial characterization. Proc. Natl. Acad. Sci. USA 76:5674–5678; 1979.

    Article  PubMed  CAS  Google Scholar 

  37. Maier, J. A.; Voulalas, P.; Roeder, D.; Maciag, T. Extension of the life-span of human endothelial cells by an interleukin-1 alpha antisense oligomer. Science (Wash DC) 249:1570–1574; 1990.

    Article  CAS  Google Scholar 

  38. Majack, R. A.; Bornstein, P. Regulation of collagen biosynthesis. Heparin alters the biosynthetic phenotype of vascular smooth muscle cells. Ann. NY Acad. Sci. 460:172–180; 1985.

    Article  PubMed  CAS  Google Scholar 

  39. Majack, R. A.; Clowes, A. W. Inhibition of vascular smooth muscle cell migration by heparin-like glycosaminoglycans. J. Cell. Physiol. 118:253–256; 1984.

    Article  PubMed  CAS  Google Scholar 

  40. Majors, A.; Ehrhart, L. A. Basic fibroblast growth factor in the extracellular matrix suppresses collagen synthesis and type III procollagen mRNA levels in arterial smooth muscle cell cultures. Arterioscler. Thromb. 13:680–686; 1993.

    PubMed  CAS  Google Scholar 

  41. Muegge, K.; Williams, T. M.; Kant, J.; Karin, M.; Chiu, R.; Schmidt, A.; Siebenlist, U.; Young, H. A.; Durum, S. K. Interleukin-1 costimulatory activity on the interleukin-2 promoter via AP-1. Science (Wash DC) 246:249–251; 1989.

    Article  CAS  Google Scholar 

  42. Mueller, S. N.; Thomas, K. A.; Di Salvo, J.; Levine, E. M. Stabilization by heparin of acidic fibroblast growth factor mitogenicity for human endothelial cells in vitro. J. Cell. Physiol. 140:439–448; 1989.

    Article  PubMed  CAS  Google Scholar 

  43. Reid, G. G.; Lackie, J. M.; Gorham, S. D. The behaviour of BHK cells and neutrophil leukocytes on collagen gels of defined mechanical strength. Cell Biol. Int. Rep. 14:1033–1045; 1990.

    Article  PubMed  CAS  Google Scholar 

  44. Reid, G. G.; Newman, I. Human leucocyte migration through collagen matrices containing other extracellular matrix components. Cell Biol. Int. Rep. 15:711–720; 1991.

    Article  PubMed  CAS  Google Scholar 

  45. Rubartelli, A.; Cozzolino, F.; Talio, M.; Sitia, R. A novel secretory pathway for interleukin-1 beta, a protein lacking a signal sequence. EMBO J. 9:1503–1510; 1990.

    PubMed  CAS  Google Scholar 

  46. Schmidt, J. A.; Mizel, S. B.; Cohen, D.; Green, I. Interleukin 1, a potential regulator of fibroblast proliferation. J. Immunol. 128:2177–2182; 1982.

    PubMed  CAS  Google Scholar 

  47. Shirakawa, F.; Mizel, S. B. In vitro activation and nuclear translocation of NF-kappa B catalyzed by cyclic AMP-dependent protein kinase and protein kinase C. Mol. Cell. Biol. 9:2424–2430; 1989.

    PubMed  CAS  Google Scholar 

  48. Sorger, T.; Friday, N.; Yang, L. D.; Levine, E. M. Heparin and the phenotype of adult human vascular smooth muscle cells. In Vitro Cell. Dev. Biol. Anim. 31:671–683; 1995.

    Article  PubMed  CAS  Google Scholar 

  49. Sorger, T.; Plank, B.; Tan, E.; Levine, E. Heparin and the phenotype of adult human arterial smooth muscle cells in the presence of heparin. J. Cell Biol. 109:331a; 1989.

  50. Tajima, S.; Wachi, H.; Takehana, M. Post-translational regulation of type I collagen synthesis by heparin in vascular smooth muscle cells. J. Biochem. 117:353–358; 1995.

    PubMed  CAS  Google Scholar 

  51. Tan, E. M.; Dodge, G. R.; Sorger, T.; Kovalszky, I.; Unger, G. A.; Yang, L.; Levine, E. M.; Iozzo, R. V. Modulation of extracellular matrix gene expression by heparin and endothelial cell growth factor in human smooth muscle cells. Lab. Invest. 64:474–482; 1991.

    PubMed  CAS  Google Scholar 

  52. Tan, E. M.; Levine, E.; Sorger, T.; Unger, G. A.; Hacobian, N.; Planck, B.; Iozzo, R. V. Heparin and endothelial cell growth factor modulate collagen and proteoglycan production in human smooth muscle cells. Biochem. Biophys. Res. Commun. 163:84–92; 1989.

    Article  PubMed  CAS  Google Scholar 

  53. Tokunaga, K.; Nakamura, Y.; Sakata, K.; Fujimori, K.; Ohkubo, M.; Sawada, K.; Sakiyama, S. Enhanced expression of a glyceraldehyde-3-phosphate dehydrogenase gene in human lung cancers. Cancer Res. 47:5616–5619; 1987.

    PubMed  Google Scholar 

  54. Utoguchi, N.; Mizuguchi, H.; Dantakean, A.; Makimoto, H.; Wakai, Y.; Tsutsumi, Y.; Nakagawa, S.; Mayumi, T. Effect of tumour cell-conditioned medium on endothelial macromolecular permeability and its correlation with collagen. Br. J. Cancer 73:24–28; 1996.

    PubMed  CAS  Google Scholar 

  55. Wachi, H.; Seyama, Y.; Tajima, S. Modulation of elastin expression by heparin is dependent on the growth condition of vascular smooth muscle cells: up-regulation of elastin expression by heparin in the proliferating cells is mediated by the inhibition of protein kinase C activity. J. Biochem. 118:582–586; 1995.

    PubMed  CAS  Google Scholar 

  56. Warner, S. J.; Auger, K. R.; Libby, P. Human interleukin 1 induces interleukin 1 gene expression in human vascular smooth muscle cells. J. Exp. Med. 165:1316–1331; 1987.

    Article  PubMed  CAS  Google Scholar 

  57. Wessendorf, J. H.; Garfinkel, S.; Zhan, X.; Brown, S.; Maciag, T. Identification of a nuclear localization sequence within the structure of the human interleukin-1 alpha precursor. J. Biol. Chem. 268:22100–22104; 1993.

    PubMed  CAS  Google Scholar 

  58. Wight, T. N.; Hascall, V. C. Proteoglycans in primate arteries. III. Characterization of the proteoglycans synthesized by arterial smooth muscle cells in culture. J. Cell Biol. 96:167–176; 1983.

    Article  PubMed  CAS  Google Scholar 

  59. Williams, S. P.; Mason, R. M. Modulation of proteoglycan synthesis by bovine vascular smooth muscle cells during cellular proliferation and treatment with heparin. Arch. Biochem. Biophys. 287:386–396; 1991.

    Article  PubMed  CAS  Google Scholar 

  60. Zoellner, H.; Filonzi, E. L.; Stanton, H. R.; Layton, J. E.; Hamilton, J. A. Human arterial smooth muscle cells synthesize granulocyte colony-stimulating factor in response to interleukin-1 alpha and tumor necrosis factor-alpha. Blood 80:2805–2810; 1992.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, JY., Hsu, MY., Sorger, T. et al. Heparin/endothelial cell growth supplement regulates matrix gene expression and prolongs life span of vascular smooth muscle cells through modulation of interleukin-1. In Vitro Cell.Dev.Biol.-Animal 35, 647–654 (1999). https://doi.org/10.1007/s11626-999-0105-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-999-0105-6

Key words

Navigation