Skip to main content

Advertisement

Log in

H-ras-transformed NRK-52E renal epithelial cells have altered growth, morphology, and cytoskeletal structure that correlates with renal cell carcinoma in vivo

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

We studied the effect of the ras oncogene on the growth kinetics, morphology, cytoskeletal structure, and tumorigenicity of the widely used NRK-52E rat kidney epithelial cell line and two H-ras oncogene-transformed cell lines, H/1.2-NRK-52E (H/1.2) and H/6.1-NRK-52E (H/6.1). Population doubling times of NRK-52E, H/1.2, and H/6.1 cells were 28, 26, and 24 h, respectively, with the transformed cells reaching higher saturation densities than the parent cells. NRK-52E cells had typical epithelial morphology with growth in colonies. H/1.2 and H/6.1 cell colonies were more closely packed, highly condensed, and had increased plasma membrane ruffling compared to parent cell colonies. NRK-52E cells showed microfilament, microtubule, and intermediate filament networks typical of epithelial cells, while H/1.2 and H/6.1 cells showed altered cytoskeleton architecture, with decreased stress fibers and increased microtubule and intermediate filament staining at the microtubule organizing center. H/1.2 and H/6.1 cells proliferated in an in vitro soft agar transformation assay, indicating anchorage-independence, and rapidly formed tumors in vivo with characteristics of renal cell carcinoma, including mixed populations of sarcomatoid, granular, and clear cells, H/6.1 cells consistently showed more extensive alterations of growth kinetics, morphology, and cytoskeleton than H/1.2 cells, and formed tumors of a more aggressive phenotype. These data suggest that analysis of renal cell characteristics in vitro may have potential in predicting tumor behavior in vivo, and significantly contribute to the utility of these cell lines as in vitro models for examining renal epithelial cell biology and the role of the ras proto-oncogene in signal transduction involving the cytoskeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andries, M.; Tilemans, D.; Denef, C. Modulation of epidermal growth factor receptor binding and action by N-acetyl-TGFα(34–43) methyl ester. Peptides 15:619–625; 1994.

    Article  PubMed  CAS  Google Scholar 

  2. Anzano, M. A.; Rieman, D.; Prichett, W., et al. Growth factor production by human colon carcinoma cell lines. Cancer Res. 49:2898–2904; 1989.

    PubMed  CAS  Google Scholar 

  3. Baghdassarian, D.; Toru-Delbauffe, D.; Gavaret, J.-M., et al. Effects of transforming growth factor-β1 on the extracellular matrix and cytoskeleton of cultured astrocytes. Glia 7:193–202; 1993.

    Article  PubMed  CAS  Google Scholar 

  4. Bar-Sagi, D.; Feramisco, J. R. Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins. Science (Wash., DC) 233:1061–1068; 1986.

    Article  CAS  Google Scholar 

  5. Basolo, F.; Elliott, J.; Tait, L., et al. Transformation of human breast epithelial cells by c-Ha-ras oncogene. Mol. Carcinog. 4:25–35; 1991.

    Article  PubMed  CAS  Google Scholar 

  6. Bos, J. B. ras oncogenes in human cancer: a review. Cancer Res. 49:4682–4689; 1989.

    PubMed  CAS  Google Scholar 

  7. Burns, J. S.; Blaydes, J. P.; Wright, P. A., et al. Stepwise transformation of primary thyroid epithelial cells by a mutant Ha-ras oncogene: an in vitro model of tumor progression. Mol. Carcinog. 6:129–139; 1992.

    Article  PubMed  CAS  Google Scholar 

  8. Chou, Y.-H.; Skalli, O.; Goldman, R. D. Intermediate filaments and cytoplasmic networking: new connections and more functions. Curr. Opin. Cell Biol. 9:49–53; 1997.

    Article  PubMed  CAS  Google Scholar 

  9. Dartsch, P. C.; Ritter, M.; Häussinger, D., et al. Cytoskeletal reorganization in NIH 3T3 fibroblasts expressing the ras oncogene. Eur. J. Cell Biol. 63:316–325; 1994.

    PubMed  CAS  Google Scholar 

  10. Davis, M. A.; Chang, S. H.; Trump, B. F. Differential sensitivity of normal and H-ras oncogene-transformed rat kidney epithelial cells to okadaic acid-induced apoptosis. Toxicol. Appl. Pharmacol. 141:93–101; 1996.

    PubMed  CAS  Google Scholar 

  11. Davis, M. A.; Smith, M. W.; Chang, S. H., et al. Characterization of a renal epithelial cell model of apoptosis using okadaic acid and the NRK-52E cell line. Toxicol. Pathol. 22:595–605; 1994.

    Article  PubMed  CAS  Google Scholar 

  12. DeLarco, J. E.; Todaro, G. J. Epithelioid and fibroblastic rat kidney cell clones: epidermal growth factor (EGF) receptors and the effect of mouse sarcoma virus transformation. J. Cell Physiol. 94:335–342; 1978.

    Article  CAS  Google Scholar 

  13. Duc-Nguyen, H.; Rosenblum, E. N.; Zeigel, R. F. Persistent infection of a rat kidney cell line with a Rauscher murine leukemia virus. J. Bacteriol. 92:1133–1139; 1966.

    Google Scholar 

  14. Durkin, J. P.; Whitfield, J. F. Characterization of the mitogenic signal from an oncogene ras protein. Anticancer Res. 9:1313–1324; 1991.

    Google Scholar 

  15. Franch, H. A.; Shay, J. W.; Alpern, R. J., et al. Involvement of the pRB family in TGFβ-dependent epithelial cell hypertrophy. J. Cell Biol. 129:245–254; 1995.

    Article  PubMed  CAS  Google Scholar 

  16. Fukuishi, N.; Gemba, M. Use of cultured renal epithelial cells for the study of cisplatin toxicity. Jpn. J. Pharmacol. 50:247–249; 1989.

    PubMed  CAS  Google Scholar 

  17. Garbi, C.; Colletta, G.; Cirafici, A. M., et al. Transforming growth factor-β induces cytoskeleton and extracellular matrix modifications in FRTL-5 thyroid epithelial cells. Eur. J. Cell Biol. 53:281–289; 1990.

    PubMed  CAS  Google Scholar 

  18. Geuens, G.; de Brabander, M.; Nuydens, R., et al. The interaction between microtubules and intermediate filaments in cultured cells treated with taxol and nocodazole. Cell Biol. Int. Rep. 7:35–47; 1983.

    Article  PubMed  CAS  Google Scholar 

  19. Hartmann, G.; Weidner, K. M.; Schwarz, H., et al. The motility signal of scatter factor/hepatocyte growth factor mediated through the receptor tyrosine kinase met requires intracellular action of Ras. J. Biol. Chem. 269:21936–21939; 1994.

    PubMed  CAS  Google Scholar 

  20. Haugen, A.; Ryberg, D.; Hansteen, I., et al. Neoplastic transformation of a human kidney epithelial cell line transfected with v-Ha-ras oncogene. Int. J. Cancer 45:572–577; 1990.

    Article  PubMed  CAS  Google Scholar 

  21. Hise, M. K.; Jacobs, S. C.; Papadimitriou, J. C., et al. Transforming growth factor-α expression in human renal cell carcinoma. Urology 47:29–33; 1996.

    Article  PubMed  CAS  Google Scholar 

  22. Hordijk, P. L.; ten Klooster, J. P.; vander Kammen, R. A., et al. Inhibition of invasion of epithelial cells by Tiam1-Rac signaling. Science (Wash., DC) 278:1464–1466; 1997.

    Article  CAS  Google Scholar 

  23. Hotchin, N. A.; Hall, A. The assembly of integrin adhesion complexes requires both extracellular matrix and intracellular rho/rac GTPases. J. Cell Biol. 131:1857–1865; 1995.

    Article  PubMed  CAS  Google Scholar 

  24. Houck, K. A.; Michalopoulos, G. K.; Strom, S. C. Introduction of Ha-ras oncogene into rat liver epithelial cells and parenchymal hepatocytes confers resistance to the growth inhibitory effects of TGF-β. Oncogene 4:19–25; 1989.

    PubMed  CAS  Google Scholar 

  25. Huber, L. A.; Pasquali, C.; Gagescu, R., et al. Endosomal fractions from viral K-ras-transformed MDCK cells reveal transformation specific changes on two-dimensional gel maps. Electrophoresis 17:1734–1740; 1996.

    Article  PubMed  CAS  Google Scholar 

  26. Hugenschmidt, S.; Planas-Bohne, F.; Taylor, D. M. On the toxicity of low doses of tetrasodium-ethylenediamine-tetraacetate (Na-EDTA) in normal rat kidney (NRK) cells in culture. Arch. Toxicol. 67:76–78; 1993.

    Article  PubMed  CAS  Google Scholar 

  27. Humes, H. D.; Nakamura, T.; Cieslinski, D. A., et al. Role of proteoglycans and cytoskeleton in the effects of TGF-β1 on renal proximal tubule cells. Kidney Int. 43:575–584; 1993.

    PubMed  CAS  Google Scholar 

  28. Hunter, T. Oncoprotein networks. Cell 88:333–346; 1997.

    Article  PubMed  CAS  Google Scholar 

  29. Hyman, A. A.; Karsenti, E. Morphogenetic properties of microtubules and mitotic spindle assembly. Cell 84:401–410; 1996.

    Article  PubMed  CAS  Google Scholar 

  30. Joneson, T.; White, M. A.; Wigler, M. H., et al. Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of Ras. Science 271:810–812; 1996.

    Article  PubMed  CAS  Google Scholar 

  31. Kerr, D. I.; Plumb, J. A.; Freshney, R. I., et al. The effect of H-ras oncogene transfection on response on mink lung epithelial cells to growth factors and cytotoxic drugs. Anticancer Res. 11:1349–1352; 1991.

    PubMed  CAS  Google Scholar 

  32. Khosravi-Far, R.; Der, C. J. The Ras signal transduction pathway. Cancer Metastasis Rev. 13:67–89; 1994.

    Article  PubMed  CAS  Google Scholar 

  33. Konishi, N.; Donovon, P. J.; Ward, J. M. Differential effects of renal carcinogens and tumor promoters on growth promotion and inhibition of gap junctional communication in two rat epithelial cell lines. Carcinogenesis 11:903–908; 1990.

    Article  PubMed  CAS  Google Scholar 

  34. Lim, L. C.; Segal, G. H.; Wittwer, C. T. Detection of bcl-1 gene rearrangement and B-cell clonality in mantle cell lymphoma using formalin-fixed, paraffin-embedded tissues. Am. J. Clin. Pathol. 104:689–695; 1995.

    PubMed  CAS  Google Scholar 

  35. Maniotis, A. J.; Chen, C. S.; Ingber, D. E. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilzie nuclear structure. Proc. Natl. Acad. Sci. USA 94:849–854; 1997.

    Article  PubMed  CAS  Google Scholar 

  36. McCormick, F. Activators and effectors of ras p21 proteins. Curr. Opin. Genet. Dev. 4:71–76; 1994.

    Article  PubMed  CAS  Google Scholar 

  37. Mulder, K. M.; Morris, S. L. Activation of p21ras by transforming growth factor β in epithelial cells. J. Biol. Chem. 267:5029–5031; 1992.

    PubMed  CAS  Google Scholar 

  38. Ochiai, H.; Ikesue, A.; Kurokawa, M., et al. Enhanced production of rat interleukin-8 by in vitro and in vivo infections with influenza A NWS virus. J. Virol. 67:6811–6814; 1993.

    PubMed  CAS  Google Scholar 

  39. Ohgaki, H.; Kleihues, P.; Hard, G. C. Ki-ras mutations in spontaneous and chemically induced renal tumors of the rat. Mol. Carcinog. 4:455–459; 1991.

    Article  PubMed  CAS  Google Scholar 

  40. Ohnishi, Y.; Nakamura, H.; Yoshimura, M., et al. Prolonged survival of mice with human gastric cancer treated with an anti-c-erbB-2 monoclonal antibody. Br. J. Cancer 71:969–973; 1995.

    PubMed  CAS  Google Scholar 

  41. Phelps, P. C.; Best, C. J. M.; Berezesky, I. K., et al. Studies on the mechanism of sulofenur and LY295501 toxicity: effect on the regulation of cytosolic calcium in relation to cytotoxicity in normal and tumorigenic rat kidney cell lines. Cancer Lett. 97:7–15; 1995.

    Article  PubMed  CAS  Google Scholar 

  42. Prendergast, G. C.; Gibbs, J.B. Pathways of Ras function: connections to the actin cytoskeleton. Adv. Cancer Res. 62:19–64; 1993.

    Article  PubMed  CAS  Google Scholar 

  43. Qiu, R.-G.; Chen, J.; Kirn, D., et al. An essential role for Rac in Ras transformation. Nature (Lond.) 374:457–459; 1995.

    Article  CAS  Google Scholar 

  44. Qiu, R.-G.; Chen, J.; McCormick, F., et al. A role for Rho in Ras transformation. Proc. Natl. Acad. Sci. USA 92:11781–11785; 1995.

    Article  PubMed  CAS  Google Scholar 

  45. Rak, J.; Mitsuhashi, Y.; Bayko, L., et al. Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res. 55:4575–4580; 1995.

    PubMed  CAS  Google Scholar 

  46. Ridley, A.; Comoglio, P. M.; Hall, A. Regulation of scatter factor/hepatocyte growth factor responses by Ras, Rac, and Rho in MDCK cells. Mol. Cell. Biol. 15:1110–1122; 1995.

    PubMed  CAS  Google Scholar 

  47. Ridley, A. J.; Paterson, H. F.; Johnston, C. L., et al. The small GTP-binding protein Rac regulates growth factor-induced membrane ruffling. Cell 70:401–410; 1992.

    Article  PubMed  CAS  Google Scholar 

  48. Schäfer, R. Suppression of ras oncogene-mediated transformation. Rev. Physiol. Biochem. Pharmacol. 124:30–91; 1994.

    Google Scholar 

  49. Sistonen, L.; Keski-Oja, J.; Ulmanen, I., et al. Dose effects of transfected c-Ha-ras Val12 oncogene in transformed cell clones. Exp. Cell Res. 168:518–530; 1987.

    Article  PubMed  CAS  Google Scholar 

  50. Slebos, R. J. C.; Rodenhuis, S. The ras gene family in human non-small-cell lung cancer. J. Natl. Cancer Inst. 13:23–29; 1992.

    Google Scholar 

  51. Spandidos, D. A. Malignant transformation of early passage rodent cells by a single mutated human oncogene. Nature (Lond.) 310:469–475; 1984.

    Article  CAS  Google Scholar 

  52. Stewart, P. M.; Whorwood, C. B. 11-β-Hydroxysteroid dehydrogenase activity and corticosteroid hormone action. Steroids 59:90–95; 1994.

    Article  PubMed  CAS  Google Scholar 

  53. Stromskaya, T. P.; Grigorian, I. A.; Ossovskaya, V. S., et al. Cell-specific effects of ras oncogene and protein kinase C agonist TPA on P-glycoprotein function. FEBS Lett. 368:373–376; 1995.

    Article  PubMed  CAS  Google Scholar 

  54. Walker, C.; Everitt, J.; Freed, J. J., et al. Altered expression of transforming growth factor-β in hereditary rat renal carcinoma. Cancer Res. 51:2973–2978; 1991.

    PubMed  CAS  Google Scholar 

  55. Watanabe, K.; Kinoshita, S.; Nakagawa, H. Purification and characterization of cytokine-induced neutrophil chemoattractant produced by an epithelioid cell line of normal rat kidney (NRK-52E). Biochem. Biophys. Res. Comm. 161:1093–1099; 1989.

    Article  PubMed  CAS  Google Scholar 

  56. Yan, Z.; Winawer, S.; Friedman, E. Two different signal transduction pathways can be activated by transforming growth factor β1 in epithelial cells. J. Biol. Chem. 269:13231–13237; 1994.

    PubMed  CAS  Google Scholar 

  57. Yoakum, G. H.; Lechner, J. F.; Gabrielson, E. W., et al. Transformation of human bronchial epithelial cells transfected by Harvey ras oncogene. Science 227:1174–1179; 1985.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Best, C.J.M., Tanzer, L.R., Phelps, P.C. et al. H-ras-transformed NRK-52E renal epithelial cells have altered growth, morphology, and cytoskeletal structure that correlates with renal cell carcinoma in vivo . In Vitro Cell.Dev.Biol.-Animal 35, 205–214 (1999). https://doi.org/10.1007/s11626-999-0028-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-999-0028-2

Key words

Navigation