Skip to main content
Log in

Establishment of an epidermal growth factor-dependent, multipotent neural precursor cell line

  • Growth, Differentiation And Senescence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

We have established a multipotent clonal cell line, named MEB5, from embryonic mouse forebrains after the infection of a retrovirus carrying E7 oncogene of human papillomavirus type 16. MEB5 cells proliferated in serum-free, epidermal growth factor (EGF)-supplemented medium. They expressed markers for neural precursor cells (nestin, A2B5, and RC1) and did not express markers for neurons (class III β-tubulin), astrocytes (glial fibrillary acidic protein), and oligodendrocytes (galactocerebroside). MEB5 cells were stably maintained in an undifferentiated state with a diploid karyotype in the presence of EGF. When they were deprived of EGF, about 50% of the cells died due apoptosis within 24 h. The remaining cells differentiated into neurons, astrocytes, or oligodendrocytes within 2 wk. The newly developed cells with neuronal morphology were immunoreactive for γ-aminobutyric acid and exhibited neuronal electrophysiological properties. When MEB5 cells were treated with leukemia inhibitory for 7 d, they were induced to differentiate exclusively into astrocytes. These results inducate that MEB5 is a cell line with characteristics of EGF-dependent, multipotent neural precursor cells. This cell line should provide a good model system to study the mechanisms of survival, proliferation, and differentiation of the multipotent precursor cells in the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed, S.; Reynolds, B. A.; Weiss, S. BDNF enhances the differentiation but not the survival of CNS stem cell-derived neuronal precursors. J. Neurosci. 15:5765–5778; 1995.

    PubMed  CAS  Google Scholar 

  2. Barres, B. A.; Hart, I. K.; Coles, H. S. R., et al. Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70:31–46; 1992.

    Article  PubMed  CAS  Google Scholar 

  3. Bartlett, P. F.; Reid, H. H.; Bailey, K. A., et al. Immortalization of mouse neural precursor cells by the c-myc oncogene. Proc. Natl. Acad. Sci. USA 85:3255–3259; 1988.

    Article  PubMed  CAS  Google Scholar 

  4. Bernard, O.; Reid, H. H.; Bartlett, P. F. Role of the c-myc and the N-myc proto-oncogenes in the immortalization of neural precursors. J. Neurosci. Res. 24:9–20; 1989.

    Article  PubMed  CAS  Google Scholar 

  5. Cepko, C. Immortalization of neural cells via oncogene transduction. Trends Neurosci. 11:6–8; 1988.

    Article  PubMed  CAS  Google Scholar 

  6. Chalmers-Redman, R. M. E.; Priestley, T.; Kemp, J. A., et al. In vitro propagation and inducible differentiation of multipotential progenitor cells from human fetal brain. Neuroscience 76:1121–1128; 1997.

    Article  PubMed  CAS  Google Scholar 

  7. Davis, A. A.; Temple, S. A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature 372:263–266; 1994.

    Article  PubMed  CAS  Google Scholar 

  8. Dyson, N.; Howley, P. M.; Munger, K., et al. The human papillomavirus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243:934–937; 1989.

    Article  PubMed  CAS  Google Scholar 

  9. Edwards, M. A.; Yamamoto, M.; Caviness, V. S., Jr. Organization of radial glia and related cells in the developing murine CNS: an analysis based upon a new monoclonal antibody marker. Neuroscience 36:121–144; 1990.

    Article  PubMed  CAS  Google Scholar 

  10. Frederiksen, K.; Jat, P. S.; Valtz, N., et al. Immortalization of precursor cells from the mammalian CNS. Neuron 1:439–448; 1988.

    Article  PubMed  CAS  Google Scholar 

  11. Gage, F. H.; Ray, J.; Fisher, L. J. Isolation, characterization, and use of stem cells from the CNS. Annu. Rev. Neurosci. 18:159–192; 1995.

    Article  PubMed  CAS  Google Scholar 

  12. Gritti, A.; Parati, E. A.; Cova, L., et al. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J. Neurosci. 16:1091–1100; 1996.

    PubMed  CAS  Google Scholar 

  13. Inoue, H.; Kondoh, G.; Kamakura, C. R. et al. Progression of rat embryo fibroblast cells immortalized with transforming genes of human papillomavirus type 16. Virology 180:191–198; 1991.

    Article  PubMed  CAS  Google Scholar 

  14. Johe, K. K.; Hazel, T. G.; Muller, T., et al. Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes & Dev. 10:3129–3140; 1996.

    CAS  Google Scholar 

  15. Kilpatrick, T. J.; Richards, L. J.; Bartlett, P. F. The regulation of neural precursor cells within the mammalian brain. Mol. Cell. Neurosci. 6:2–15; 1995.

    Article  PubMed  CAS  Google Scholar 

  16. Lendahl, U.; McKay, D. G. The use of cell lines in neurobiology. Trends Neurosci. 13:132–137; 1990.

    Article  PubMed  CAS  Google Scholar 

  17. Lendahl, U.; Zimmerman, L. B.; McKay, R. D. G. CNS stem cells express a new class of intermediate filament protein. Cell 60:585–595; 1990.

    Article  PubMed  CAS  Google Scholar 

  18. Marone, M.; Quinones-Jenab, V.; Meiners, S., et al. An immortalized mouse neuroepithelial cell line with neuronal and glial phenotypes. Dev. Neurosci. 17:311–323; 1995.

    PubMed  CAS  Google Scholar 

  19. Michler-Stuke, A.; Wolff, J. R.; Bottenstein, J. E. Factors influencing astrocyte growth and development in defined media. Int. J. Dev. Neurosci. 2:575–584; 1984.

    Article  Google Scholar 

  20. Nakafuku, M.; Nakamura, S. Establishment and characterization of a multipotential neural cell line that can conditionally generate neurons, astrocytes, and oligodendrocytes in vitro. J. Neurosci. Res. 41:153–168; 1995.

    Article  PubMed  CAS  Google Scholar 

  21. Nakagaito, Y.; Yoshida, T.; Satoh, M., et al. Effects of leukemia inhibitory factor on the differentiation of astrocyte progenitor cells from embryonic mouse cerebral hemispheres. Dev. Brain Res. 87:220–223; 1995.

    Article  CAS  Google Scholar 

  22. Raff, M. C.; Abney, E. R.; Cohen, J., et al. Two types of astrocytes in cultures of developing rat white matter: differences in morphology, surface gangliosides, and growth characteristics. J. Neurosci. 3:1289–1300; 1983.

    PubMed  CAS  Google Scholar 

  23. Redies, C.; Lendahl, U.; McKay, R. D. G. Differentiation and heterogeneity in T-antigen immortalized precursor cell lines from mouse cerebellum. J. Neurosci. Res. 30:601–615; 1991.

    Article  PubMed  CAS  Google Scholar 

  24. Renfranz, P. J.; Cunningham, M. G.; McKay, R. D. G. Region-specific differentiation of the hippocampal stem cell line HiB5 upon implantation into the developing mammalian brain. Cell 66:713–729; 1991.

    Article  PubMed  CAS  Google Scholar 

  25. Reynolds, B. A.; Tetzlaff, W.; Weiss, S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci. 12:4565–4574; 1992.

    PubMed  CAS  Google Scholar 

  26. Reynolds, B. A.; Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Nature 255:1707–1710; 1992.

    CAS  Google Scholar 

  27. Reynolds, B. A.; Weiss, S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol. 175:1–13; 1996.

    Article  PubMed  CAS  Google Scholar 

  28. Ryder, E. F.; Snyder, E. Y.; Cepko, C. L. Establishment and characterization of multipotent neural cell lines using retrovirus vector-mediated oncogene transfer. J. Neurobiol. 21:356–375; 1990.

    Article  PubMed  CAS  Google Scholar 

  29. Svendsen, C. N.; Fawcett, J. W.; Bentlage, C., et al. Increased survival of rat EGF-generated CNS precursor cells using B27 supplemented medium. Exp. Brain Res. 102:407–414; 1995.

    Article  PubMed  CAS  Google Scholar 

  30. Temple, S.; Davis, A. A. Isolated rat cortical progenitor cells are maintained in division in vitro by membrane-associated factors. Development 120:999–1008; 1994.

    PubMed  CAS  Google Scholar 

  31. Visger, J. R. V.; Yeon, D. S.; Oh, T. H., et al. Differentiation and maturation of astrocytes derived from neuroepithelial progenitor cells in culture. Exp. Neurol. 128:34–40; 1994.

    Article  Google Scholar 

  32. Ware, C. B.; Horowitz, M. C.; Renshaw, B. R., et al. Targeted disruption of the low-affinity leukemia inhibitory factor receptor gene causes placental, skeletal, neural and metabolic defects and results in perinatal death. Development 121:1283–1299; 1995.

    PubMed  CAS  Google Scholar 

  33. Weiss, S.; Reynolds, B. A.; Vescovi, A. L., et al. Is there a neural stem cell in the mammalian forebrain? Trends Neurosci. 19:387–393; 1996.

    Article  PubMed  CAS  Google Scholar 

  34. Yoshida, T.; Satoh, M.; Nakagaito, Y., et al. Cytokines affecting survival and differentiation of an astrocyte progenitor cell line. Dev. Brain Res. 76:147–150; 1993.

    Article  CAS  Google Scholar 

  35. Yoshida, T.; Takeuchi, M. Establishment of an astrocyte progenitor cell line: induction of glial fibrillary acidic protein and fibronectin by transforming growth factor-β1. J. Neurosci. Res. 35:129–137; 1993.

    Article  PubMed  CAS  Google Scholar 

  36. Yutsudo, M.; Okamoto, Y.; Hakura, A. Functional dissociation of transforming genes of human papillomavirus type 16. Virology 166:594–597; 1988.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakagaito, Y., Satoh, M., Kuno, H. et al. Establishment of an epidermal growth factor-dependent, multipotent neural precursor cell line. In Vitro Cell.Dev.Biol.-Animal 34, 585–592 (1998). https://doi.org/10.1007/s11626-998-0119-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-998-0119-5

Key words

Navigation