Skip to main content
Log in

Morphological and molecular characterization of new drosophila cell lines established from a strain permissive for Gypsy transposition

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The gypsy element of Drosophila melanogaster is the first retrovirus identified in invertebrates. Its transposition is controlled by a host gene called flamenco (flam): restrictive alleles of this gene maintain the retrovirus in a repressed state while permissive alleles allow high levels of transposition. To develop a cell system to study the gypsy element, we established four independent cell lines derived from the Drosophila strain SS, which contains a permissive allele of flamenco, and which is devoid of transposing copies of gypsy. The ultrastructural analysis of three SS cell lines revealed some remarkable characteristics, such as many nuclear virus-like particles, cytoplasmic dense particles, and massive cisternae filled with a fibrous material of unknown origin. Gypsy intragenomic distribution has been compared between the three cell lines and the original SS fly strain, and revealed in two of the cell lines an increase in copy number of a restriction fragment usually present in active gypsy elements. This multiplication seems to have occurred during the passage to the cell culture. Availability of SS cell lines should assist studies of gypsy transposition and infectivity and might be useful to produce high amounts of gypsy viral particles. These new lines already allowed us to show that the Envelope-like products of gypsy can be expressed as membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayev, A. J.; Lyubomirskaya, N. V.; Dzhumagaliev, E. B., et al. Structural organization of transposable element mdg4 from Drosophila melanogaster and a nucleotide sequence of its long terminal repeats. Nucleic Acids Res. 12:3707–3723; 1984.

    Article  PubMed  CAS  Google Scholar 

  2. Bucheton, A. The relationship between the flamenco gene and gypsy in Drosophila: how to tame a retrovirus. Trends Genet. 11:349–353; 1995.

    Article  PubMed  CAS  Google Scholar 

  3. Debec, A. Isozymic patterns and functional states of in vitro cultured cell lines of Drosophila melanogaster. I. Roux’s Arch. EntwMech. Organ. 174:1–19; 1974.

    Article  CAS  Google Scholar 

  4. Debec, A. Isozymic patterns and functional states of in vitro cultured cell lines of Drosophila melanogaster. II. Roux’s Arch. Dev. Biol. 180:107–119; 1976.

    Article  CAS  Google Scholar 

  5. Di Franco, C.; Pisano, C.; Dimitri, P., et al. Genomic distribution of copia-like transposable elements in somatic tissues and during development of Drosophila melanogaster. Chromosoma 98:402–410; 1989.

    Article  PubMed  Google Scholar 

  6. Di Franco, C.; Pisano, C.; Fourcade-Peronnet, F., et al. Evidence for de novo rearrangements of Drosophila transposable elements induced by the passage to the cell culture. Genetica 87:65–73; 1992.

    Article  PubMed  Google Scholar 

  7. Echalier, G. In vitro established cell lines of Drosophila melanogaster cells and applications in physiological genetics. Invertebrate tissue culture. Kurstak, E.; Maramorosch, K., eds. New York: Academic Press; 1976:131–150.

    Google Scholar 

  8. Echalier, G. Drosophila retrotransposons: interactions with genome. Adv. Virus Res. 36:33–105; 1989.

    Article  PubMed  CAS  Google Scholar 

  9. Echalier, G.; Ohanessian, A. In vitro culture of Drosophila melanogaster embryonic cells. In Vitro 6:162–172; 1970.

    Article  PubMed  CAS  Google Scholar 

  10. Freund, R.; Meselson, M. LTR nucleotide sequence and specific insertion of the gypsy transposon. Proc. Natl. Acad. Sci. USA 81:4462–4464; 1984.

    Article  PubMed  CAS  Google Scholar 

  11. Friedell, Y. W. C.; Searles, L. L. vermilion as a small selectable marker gene for Drosophila transformation. Nucleic Acids Res. 19:5082; 1991.

    Article  Google Scholar 

  12. Ilyin, Y. V.; Lyubomirskaya, N. V.; Kim, A. I. Retrotransposon Gypsy and genetic instability in Drosophila (review). Genetica 85:13–22; 1991.

    Article  PubMed  CAS  Google Scholar 

  13. Junakovic, N.; Di, F. C.; Best Belpomme, M., et al. On the transposition of copia-like nomadic elements in cultured Drosophila cells. Chromosoma 97:212–218; 1988.

    Article  PubMed  CAS  Google Scholar 

  14. Kim, A.; Terzian, C.; Santamaria, P., et al. Retroviruses in invertebrates: the gypsy retrotransposon is apparently an infectious retrovirus of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 91:1285–1289; 1994.

    Article  PubMed  CAS  Google Scholar 

  15. Kim, A. I.; Belyaeva, E. S.; Aslanian, M. M. Autonomous transposition of gypsy mobile elements and genetic instability in Drosophila melanogaster. Mol. Gen. Genet. 224:303–308; 1990.

    Article  PubMed  CAS  Google Scholar 

  16. Kim, A. I.; Lyubomirskaya, N. V.; Belyaeva, E. S., et al. The introduction of a transpositionally active copy of retrotransposon GYPSY into the Stable Strain of Drosophila melanogaster causes genetic instability. Mol. Gen. Genet. 242:472–477; 1994.

    Article  PubMed  CAS  Google Scholar 

  17. Koelle, M. R.; Talbot, W. S.; Segraves, W. A., et al. The Drosophila EcR gene encodes an ecdysone receptor, a new member of the steroid receptor superfamily. Cell 67:59–77; 1991.

    Article  PubMed  CAS  Google Scholar 

  18. Lyubomirskaya, N. V.; Arkhipova, I. R.; Ilyin, Y. V., et al. Molecular analysis of the gypsy (mdg4) retrotransposon in two Drosophila melanogaster strains differing by genetic instability. Mol. Gen. Genet. 223:305–309; 1990.

    Article  PubMed  CAS  Google Scholar 

  19. Marlor, R. L.; Parkhurst, S. M.; Corces, V. G. The Drosophila melanogaster gypsy transposable element encodes putative gene products homologous to retroviral proteins. Mol. Cell. Biol. 6:1129–1134; 1986.

    PubMed  CAS  Google Scholar 

  20. Mizrokhi, L. J.; Obolenkova, L. A.; Priimagi, A. F., et al. The nature of unstable insertion mutations and reversions in the locus cut of Drosophila melanogaster: molecular mechanism of transposition memory. Embo J. 4:3781–3787; 1985.

    PubMed  CAS  Google Scholar 

  21. Moir, A.; Roberts, D. B. Distribution of antigens in established cell lines of Drosophila melanogaster. J. Insect Physiol. 22:299–307; 1976.

    Article  PubMed  CAS  Google Scholar 

  22. O’Connell, P.; Rosbash, M. Sequence, structure, and codon preference of the Drosophila ribosomal protein 49 gene. Nucleic Acids Res. 12:5495–5513; 1984.

    Article  PubMed  CAS  Google Scholar 

  23. Peifer, M.; Bender, W. Sequences of the gypsy transposon of Drosophila necessary for its effects on adjacent genes. Proc. Natl. Acad. Sci. USA 85:9650–9654; 1988.

    Article  PubMed  CAS  Google Scholar 

  24. Pélisson, A.; Song, S. U.; Prud’homme, N., et al. Gypsy transposition correlates with the production of a retroviral envelope-like protein under the tissue-specific control of the Drosophila flamenco gene. Embo J. 13:4401–4411; 1994.

    PubMed  Google Scholar 

  25. Plus, N.; Veyrunes, J.; Croizier, L., et al. A symptomless “Drosophila X” virus from haploid Drosophila cell lines and from fetal calf serum: a further indication of the exogenous origin of this virus. Ann. Virol. (Inst. Pasteur) 134E:293–300; 1983.

    Article  Google Scholar 

  26. Prud’homme, N.; Gans, M.; Masson, M., et al. Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster. Genetics 139:697–711; 1995.

    PubMed  CAS  Google Scholar 

  27. Shields, G.; Sang, J. An improved medium for the cultivation of Drosophila cells. Drosophila Inf. Ser. 52:161; 1977.

    Google Scholar 

  28. Song, S. U.; Gerasimova, T.; Kurkulos, M., et al. An env-like protein encoded by a Drosophila retroelement: evidence that gypsy is an infectious retrovirus. Genes Dev. 8424:2046–2057; 1994.

    Google Scholar 

  29. Thiery, J. Mise en évidence des polysaccharides sur coupes fines en microcospie électronique. J. Microsc. 6:987–1018; 1967.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chalvet, F., Debec, A., Marcaillou, C. et al. Morphological and molecular characterization of new drosophila cell lines established from a strain permissive for Gypsy transposition. In Vitro Cell.Dev.Biol.-Animal 34, 799–804 (1998). https://doi.org/10.1007/s11626-998-0034-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-998-0034-9

Key words

Navigation