Skip to main content
Log in

A circular RNA from NFIX facilitates oxidative stress-induced H9c2 cells apoptosis

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Myocardial infarction is the leading cause of death worldwide, and cardiomyocyte apoptosis during myocardial infarction and reperfusion is a significant factor of poor prognosis. As important regulatory molecules, biofunctions of circRNAs in the pathogenesis of myocardial infarction remain elusive. To confirm the expression level and biological function of circNFIX in cardiomyocytes upon oxidative stress. Divergent polymerase chain reaction and Sanger sequencing were performed to verify the circular structure. The stability of circNFIX was confirmed by RNase R treatment and actinomycin D assay. In order to simulate oxidative stress during myocardial infarction, H9c2 cells were subjected to hydrogen peroxide and hypoxia stimulation. In vivo, mouse models of myocardial ischemia were established. The biological function of circNFIX in cardiomyocytes was investigated through loss- and gain-of-function assays, and cardiomyocyte apoptosis level was detected by the terminal deoxyribonucleotidyl transferase-mediated TdT-mediated dUTP nick end labeling assay and Western blot. CircNFIX is abundant, conserved, and stable in H9c2 cells. The expression of circNFIX was significantly downregulated in cardiomyocytes subjected to oxidative stress. Enforced CircNFIX promotes H9c2 cells apoptosis induced by hydrogen peroxide, in sharp contrast to circNFIX knockdown. In this study, we found that circNFIX served as a pro-apoptosis factor in cardiomyocyte apoptosis. CircNFIX possesses potential to be the biomarker and therapeutic target in myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Aufiero S, Reckman YJ, Pinto YM, Creemers EE (2019) Circular RNAs open a new chapter in cardiovascular biology. Nat Rev Cardiol 16:503–514

    PubMed  Google Scholar 

  • Bahn JH, Zhang Q, Li F, Chan TM, Lin X, Kim Y, Wong DT, Xiao X (2015) The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva. Clin Chem 61:221–230

    CAS  PubMed  Google Scholar 

  • Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jimenez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Mackey RH, Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, Rosamond WD, Sasson C, Towfighi A, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P (2017) Heart disease and stroke Statistics-2017 update: a report from the American Heart Association. Circulation 135:e146–e603

    PubMed  PubMed Central  Google Scholar 

  • Biressi S, Tagliafico E, Lamorte G, Monteverde S, Tenedini E, Roncaglia E, Ferrari S, Ferrari S, Cusella-De Angelis MG, Tajbakhsh S, Cossu G (2007) Intrinsic phenotypic diversity of embryonic and fetal myoblasts is revealed by genome-wide gene expression analysis on purified cells. Dev Biol 304:633–651

    CAS  PubMed  Google Scholar 

  • Cai L, Qi B, Wu X, Peng S, Zhou G, Wei Y, Xu J, Chen S, Liu S (2019) Circular RNA Ttc3 regulates cardiac function after myocardial infarction by sponging miR-15b. J Mol Cell Cardiol 130:10–22

    CAS  PubMed  Google Scholar 

  • Cavalli FMG, Remke M, Rampasek L, Peacock J, Shih DJH, Luu B, Garzia L, Torchia J, Nor C, Morrissy AS, Agnihotri S, Thompson YY, Kuzan-Fischer CM, Farooq H, Isaev K, Daniels C, Cho BK, Kim SK, Wang KC, Lee JY, Grajkowska WA, Perek-Polnik M, Vasiljevic A, Faure-Conter C, Jouvet A, Giannini C, Nageswara Rao AA, Li KKW, Ng HK, Eberhart CG, Pollack IF, Hamilton RL, Gillespie GY, Olson JM, Leary S, Weiss WA, Lach B, Chambless LB, Thompson RC, Cooper MK, Vibhakar R, Hauser P, van Veelen MC, Kros JM, French PJ, Ra YS, Kumabe T, López-Aguilar E, Zitterbart K, Sterba J, Finocchiaro G, Massimino M, Van Meir EG, Osuka S, Shofuda T, Klekner A, Zollo M, Leonard JR, Rubin JB, Jabado N, Albrecht S, Mora J, Van Meter TE, Jung S, Moore AS, Hallahan AR, Chan JA, Tirapelli DPC, Carlotti CG, Fouladi M, Pimentel J, Faria CC, Saad AG, Massimi L, Liau LM, Wheeler H, Nakamura H, Elbabaa SK, Perezpeña-Diazconti M, Chico Ponce de León F, Robinson S, Zapotocky M, Lassaletta A, Huang A, Hawkins CE, Tabori U, Bouffet E, Bartels U, Dirks PB, Rutka JT, Bader GD, Reimand J, Goldenberg A, Ramaswamy V, Taylor MD 2017. Intertumoral heterogeneity within medulloblastoma subgroups Cancer Cell, 31: 737-54.e6

  • Chaudhry AZ, Lyons GE, Gronostajski RM (1997) Expression patterns of the four nuclear factor I genes during mouse embryogenesis indicate a potential role in development. Dev Dyn 208:313–325

    CAS  PubMed  Google Scholar 

  • Chen G, Shi Y, Liu M, Sun J (2018) circHIPK3 regulates cell proliferation and migration by sponging miR-124 and regulating AQP3 expression in hepatocellular carcinoma. Cell Death Dis 9:175

    PubMed  PubMed Central  Google Scholar 

  • Cui X, Wang J, Guo Z, Li M, Li M, Liu S, Liu H, Li W, Yin X, Tao J, Xu W (2018) Emerging function and potential diagnostic value of circular RNAs in cancer. Mol Cancer 17:123

    PubMed  PubMed Central  Google Scholar 

  • Dixon C, Harvey TJ, Smith AG, Gronostajski RM, Bailey TL, Piper M (2013) Nuclear factor one X regulates Bobby sox during development of the mouse forebrain. Cell Mol Neurobiol 33:867–873

    CAS  PubMed  Google Scholar 

  • Du WW, Yang W, Chen Y, Wu ZK, Foster FS, Yang Z, Li X, Yang BB (2017a) Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J 38:1402–1412

    CAS  PubMed  Google Scholar 

  • Du WW, Zhang C, Yang W, Yong T, Awan FM, Yang BB (2017b) Identifying and characterizing circRNA-protein interaction. Theranostics 7:4183–4191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Floris G, Zhang L, Follesa P, Sun T (2017) Regulatory role of circular RNAs and neurological disorders. Mol Neurobiol 54:5156–5165

    CAS  PubMed  Google Scholar 

  • Fraser J, Essebier A, Gronostajski RM, Boden M, Wainwright BJ, Harvey TJ, Piper M (2017) Cell-type-specific expression of NFIX in the developing and adult cerebellum. Brain Struct Funct 222:2251–2270

    CAS  PubMed  Google Scholar 

  • Glazar P, Papavasileiou P, Rajewsky N (2014) circBase: a database for circular RNAs. Rna 20:1666–1670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hall T, Walker M, Ganuza M, Holmfeldt P, Bordas M, Kang G, Bi W, Palmer LE, Finkelstein D, McKinney-Freeman S (2018) Nfix promotes survival of immature hematopoietic cells via regulation of c-Mpl. Stem Cells 36:943–950

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han B, Chao J, Yao H (2018) Circular RNA and its mechanisms in disease: from the bench to the clinic. Pharmacol Ther 187:31–44

    CAS  PubMed  Google Scholar 

  • Hausenloy DJ, Duchen MR, Yellon DM (2003) Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia-reperfusion injury. Cardiovasc Res 60:617–625

    CAS  PubMed  Google Scholar 

  • Heng YH, McLeay RC, Harvey TJ, Smith AG, Barry G, Cato K, Plachez C, Little E, Mason S, Dixon C, Gronostajski RM, Bailey TL, Richards LJ, Piper M (2014) NFIX regulates neural progenitor cell differentiation during hippocampal morphogenesis. Cereb Cortex 24:261–279

    PubMed  Google Scholar 

  • Holdt LM, Kohlmaier A, Teupser D (2018) Molecular roles and function of circular RNAs in eukaryotic cells. Cell Mol Life Sci 75:1071–1098

    CAS  PubMed  Google Scholar 

  • Huang S, Li X, Zheng H, Si X, Li B, Wei G, Li C, Chen Y, Chen Y, Liao W, Liao Y, Bin J (2019) Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation 139:2857–2876

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jafari Ghods F (2018) Circular RNA in saliva. Adv Exp Med Biol 1087:131–139

    PubMed  Google Scholar 

  • Li M, Ding W, Tariq MA, Chang W, Zhang X, Xu W, Hou L, Wang Y, Wang J (2018a) A circular transcript of ncx1 gene mediates ischemic myocardial injury by targeting miR-133a-3p. Theranostics 8:5855–5869

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Yang L, Chen LL (2018b) The biogenesis, functions, and challenges of circular RNAs. Mol Cell 71:428–442

    CAS  PubMed  Google Scholar 

  • Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, Zhu P, Chang Z, Wu Q, Zhao Y, Jia Y, Xu P, Liu H, Shan G (2015a) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22:256–264

    PubMed  Google Scholar 

  • Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, Chen D, Jianren G, He X, Huang S (2015b) Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res 25:981–984

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang WC, Wong CW, Liang PP, Shi M, Cao Y, Rao ST, Tsui SK, Waye MM, Zhang Q, Fu WM, Zhang JF (2019) Translation of the circular RNA circbeta-catenin promotes liver cancer cell growth through activation of the Wnt pathway. Genome Biol 20:84

    PubMed  PubMed Central  Google Scholar 

  • Lim TB, Aliwarga E, Luu TDA, Li YP, Ng SL, Annadoray L, Sian S, Ackers-Johnson MA, Foo RS (2019) Targeting the highly abundant circular RNA circSlc8a1 in cardiomyocytes attenuates pressure overload induced hypertrophy. Cardiovasc Res 115:1998–2007

    CAS  PubMed  Google Scholar 

  • Mao Y, Liu J, Zhang D, Li B (2015) MiR-1290 promotes cancer progression by targeting nuclear factor I/X(NFIX) in esophageal squamous cell carcinoma (ESCC). Biomed Pharmacother 76:82–93

    CAS  PubMed  Google Scholar 

  • Matuzelski E, Bunt J, Harkins D, Lim JWC, Gronostajski RM, Richards LJ, Harris L, Piper M (2017) Transcriptional regulation of Nfix by NFIB drives astrocytic maturation within the developing spinal cord. Dev Biol 432:286–297

    CAS  PubMed  Google Scholar 

  • O'Connor C, Campos J, Osinski JM, Gronostajski RM, Michie AM, Keeshan K (2015) Nfix expression critically modulates early B lymphopoiesis and myelopoiesis. PLoS One 10:e0120102

    PubMed  PubMed Central  Google Scholar 

  • Piper M, Gronostajski R, Messina G (2019) Nuclear factor one X in development and disease. Trends Cell Biol 29:20–30

    CAS  PubMed  Google Scholar 

  • Riddell J, Gazit R, Garrison BS, Guo G, Saadatpour A, Mandal PK, Ebina W, Volchkov P, Yuan GC, Orkin SH, Rossi DJ (2014) Reprogramming committed murine blood cells to induced hematopoietic stem cells with defined factors. Cell 157:549–564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rong D, Sun H, Li Z, Liu S, Dong C, Fu K, Tang W, Cao H (2017) An emerging function of circRNA-miRNAs-mRNA axis in human diseases. Oncotarget 8:73271–73281

    PubMed  PubMed Central  Google Scholar 

  • Rossi G, Antonini S, Bonfanti C, Monteverde S, Vezzali C, Tajbakhsh S, Cossu G, Messina G (2016) Nfix regulates temporal progression of muscle regeneration through modulation of Myostatin expression. Cell Rep 14:2238–2249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stringer BW, Bunt J, Day BW, Barry G, Jamieson PR, Ensbey KS, Bruce ZC, Goasdoué K, Vidal H, Charmsaz S, Smith FM, Cooper LT, Piper M, Boyd AW, Richards LJ (2016) Nuclear factor one B (NFIB) encodes a subtype-specific tumour suppressor in glioblastoma. Oncotarget 7:29306–29320

    PubMed  PubMed Central  Google Scholar 

  • Sun H, Tang W, Rong D, Jin H, Fu K, Zhang W, Liu Z, Cao H, Cao X (2018) Hsa_circ_0000520, a potential new circular RNA biomarker, is involved in gastric carcinoma. Cancer Biomark 21:299–306

    CAS  PubMed  Google Scholar 

  • Tan WL, Lim BT, Anene-Nzelu CG, Ackers-Johnson M, Dashi A, See K, Tiang Z, Lee DP, Chua WW, Luu TD, Li PY, Richards AM, Foo RS (2017) A landscape of circular RNA expression in the human heart. Cardiovasc Res 113:298–309

    CAS  PubMed  Google Scholar 

  • Townsend N, Wilson L, Bhatnagar P, Wickramasinghe K, Rayner M, Nichols M (2016) Cardiovascular disease in Europe: epidemiological update 2016. Eur Heart J 37:3232–3245

    PubMed  Google Scholar 

  • Wang JX, Jiao JQ, Li Q, Long B, Wang K, Liu JP, Li YR, Li PF (2011) miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med 17:71–78

    PubMed  Google Scholar 

  • Wang K, Gan TY, Li N, Liu CY, Zhou LY, Gao JN, Chen C, Yan KW, Ponnusamy M, Zhang YH, Li PF (2017) Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression. Cell Death Differ 24:1111–1120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Long B, Liu F, Wang JX, Liu CY, Zhao B, Zhou LY, Sun T, Wang M, Yu T, Gong Y, Liu J, Dong YH, Li N, Li PF (2016) A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 37:2602–2611

    CAS  PubMed  Google Scholar 

  • Wang K, Long B, Zhou LY, Liu F, Zhou QY, Liu CY, Fan YY, Li PF (2014) CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nat Commun 5:3596

    PubMed  Google Scholar 

  • Wang K, Zhou LY, Wang JX, Wang Y, Sun T, Zhao B, Yang YJ, An T, Long B, Li N, Liu CY, Gong Y, Gao JN, Dong YH, Zhang J, Li PF (2015) E2F1-dependent miR-421 regulates mitochondrial fragmentation and myocardial infarction by targeting Pink1. Nat Commun 6:7619

    CAS  PubMed  Google Scholar 

  • Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang W, Wang G, Wu P, Wang H, Jiang L, Yuan W, Sun Z, Ming L (2019) Exosomal circRNAs: biogenesis, effect and application in human diseases. Mol Cancer 18:116

    PubMed  PubMed Central  Google Scholar 

  • Werfel S, Nothjunge S, Schwarzmayr T, Strom TM, Meitinger T, Engelhardt S (2016) Characterization of circular RNAs in human, mouse and rat hearts. J Mol Cell Cardiol 98:103–107

    CAS  PubMed  Google Scholar 

  • Wu P, Mo Y, Peng M, Tang T, Zhong Y, Deng X, Xiong F, Guo C, Wu X, Li Y, Li X, Li G, Zeng Z, Xiong W (2020) Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA. Mol Cancer 19:22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Zhang Y, Qi L, Ding L, Jiang H, Yu H (2018) NFIX circular RNA promotes glioma progression by regulating miR-34a-5p via notch signaling pathway. Front Mol Neurosci 11:225

    PubMed  PubMed Central  Google Scholar 

  • Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H, Huang S, Xie B, Zhang N (2018) Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst 110:304–315

    CAS  Google Scholar 

  • Zeng K, Chen X, Xu M, Liu X, Hu X, Xu T, Sun H, Pan Y, He B, Wang S (2018) CircHIPK3 promotes colorectal cancer growth and metastasis by sponging miR-7. Cell Death Dis 9:417

    PubMed  PubMed Central  Google Scholar 

  • Zeng Y, Du WW, Wu Y, Yang Z, Awan FM, Li X, Yang W, Zhang C, Yang Q, Yee A, Chen Y, Yang F, Sun H, Huang R, Yee AJ, Li RK, Wu Z, Backx PH, Yang BB (2017) A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics 7:3842–3855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Huang N, Yang X, Luo J, Yan S, Xiao F, Chen W, Gao X, Zhao K, Zhou H, Li Z, Ming L, Xie B, Zhang N (2018a) A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene 37:1805–1814

    CAS  PubMed  Google Scholar 

  • Zhang M, Zhao K, Xu X, Yang Y, Yan S, Wei P, Liu H, Xu J, Xiao F, Zhou H, Yang X, Huang N, Liu J, He K, Xie K, Zhang G, Huang S, Zhang N (2018b) A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat Commun 9:4475

    PubMed  PubMed Central  Google Scholar 

  • Zhang S-J, Xue C, Li C-P, Li X-M, Liu C, Liu B-H, Shan K, Jiang Q, Zhao C, Yan B (2017) Identification and characterization of circular RNAs as a new class of putative biomarkers in diabetes retinopathy. Invest Ophthalmol Vis Sci 58:6500–6509

    CAS  PubMed  Google Scholar 

Download references

Funding

The support was provided by the National Natural Science Foundation of China (81770900), the Science and Technology Development Foundation of Shandong Province (2014GHY115025).

Author information

Authors and Affiliations

Authors

Contributions

X. C. and Y. D. contributed equally to this study. W. X., X. C., and Y. D. contributed to the design of this study. X. C., Y. D., X. W., M. J., W. Y., G. L., and S. S. performed all the experiments. X. C. and M. L. performed the data collection and analysis. X. C. and Y. D. contributed to the interpretation of data and drafting the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wenhua Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Animal studies

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the ethical standards of the Animal Care Committee, Qingdao University.

Human subjects/informed consent statement

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Editor: Tetsuji Okamoto

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 373 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Dong, Y., Li, M. et al. A circular RNA from NFIX facilitates oxidative stress-induced H9c2 cells apoptosis. In Vitro Cell.Dev.Biol.-Animal 56, 715–722 (2020). https://doi.org/10.1007/s11626-020-00476-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-020-00476-z

Keywords

Navigation