Skip to main content
Log in

A lncRNA promotes myoblast proliferation by up-regulating GH1

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Long noncoding RNAs (lncRNAs) are key regulatory factors for gene expression in a variety of biological processes; however, the role of lncRNAs in muscle formation and development is poorly understood, particularly in cattle. Here, we identified a highly expressed lncRNA in muscle, lncYYW, by high-throughput sequencing in bovine longissimus, scapular, intercostal, and gluteus muscles. The expression of lncYYW increased gradually during myoblast differentiation. Overexpression of lncYYW increased the number of cells in the DNA synthesis (S) stage of the cell cycle and upregulated the expression of two well-established myogenic markers, myogenin and myosin heavy chain. A microarray analysis showed that lncYYW positively regulates the expression of growth hormone 1 and its downstream genes, AKT1 and PIK3CD, in bovine myoblasts. This discovery provides a good foundation for further study of the mechanism of action of lncYYW during bovine myoblast development. Taken together, our results reveal a novel lncRNA associated with bovine myoblast proliferation and differentiation. This lncRNA will play a crucial and critical role in future studies of bovine muscle development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Bassel-Duby R, Olson EN (2006) Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem 75:19–37

    Article  CAS  PubMed  Google Scholar 

  • Bhatt AP, Bhende PM, Sin SH, Roy D, Dittmer DP, Damania B (2010) Dual inhibition of PI3K and mTOR inhibits autocrine and paracrine proliferative loops in PI3K/Akt/mTOR-addicted lymphomas. Blood 115:4455–4463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt AP, Damania B (2012) AKTivation of PI3K/AKT/mTOR signaling pathway by KSHV. Front Immunol 3:401

    PubMed  Google Scholar 

  • Buckingham M, Vincent SD (2009) Distinct and dynamic myogenic populations in the vertebrate embryo. Curr Opin Genet Dev 19:444–453

    Article  CAS  PubMed  Google Scholar 

  • Butler AA, Le Roith D (2001) Control of growth by the somatropic axis: growth hormone and the insulin-like growth factors have related and independent roles. Annu Rev Physiol 63:141–164

    Article  CAS  PubMed  Google Scholar 

  • Cabianca DS, Casa V, Bodega B, Xynos A, Ginelli E, Tanaka Y, Gabellini D (2012) A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell 149:819–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25:1915–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caley DP, Pink RC, Trujillano D, Carter DR (2010) Long noncoding RNAs, chromatin, and development. TheScientificWorldJOURNAL 10:90–102

    Article  CAS  PubMed  Google Scholar 

  • Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147:358–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cusella-De Angelis, MG, Molinari S, Le Donne A, Coletta M, Vivarelli E, Bouche M, Molinaro M, Ferrari S, and Cossu G (1994). Differential response of embryonic and fetal myoblasts to TGF beta: a possible regulatory mechanism of skeletal muscle histogenesis. Development 120, 925–933

  • Dai Y, Wang YM, Zhang WR, Liu XF, Li X, Ding XB, Guo H (2016) The role of microRNA-1 and microRNA-206 in the proliferation and differentiation of bovine skeletal muscle satellite cells. In Vitro Cell Dev Biol Anim 52:27–34

    Article  CAS  PubMed  Google Scholar 

  • Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241

    Article  CAS  PubMed  Google Scholar 

  • Dinger ME, Pang KC, Mercer TR, Mattick JS (2008) Differentiating protein-coding and noncoding RNA: challenges and ambiguities. PLoS Comput Biol 4:e1000176

    Article  PubMed  PubMed Central  Google Scholar 

  • Emerman, J.T. Leahy, M. Gout, P.W. and Bruchovsky, N. (1985). Elevated growth hormone levels in sera from breast cancer patients. Hormone and metabolic research Hormon und Stoffwechselforschung = Hormones et metabolisme 17, 421–424

  • Frith MC, Bailey TL, Kasukawa T, Mignone F, Kummerfeld SK, Madera M, Sunkara S, Furuno M, Bult CJ, Quackenbush J et al (2006) Discrimination of non-protein-coding transcripts from protein-coding mRNA. RNA Biol 3:40–48

    Article  CAS  PubMed  Google Scholar 

  • Lee JT, Bartolomei MS (2013) X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 152:1308–1323

    Article  CAS  PubMed  Google Scholar 

  • Legnini I, Morlando M, Mangiavacchi A, Fatica A, Bozzoni I (2014) A feedforward regulatory loop between HuR and the long noncoding RNA linc-MD1 controls early phases of myogenesis. Mol Cell 53:506–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeRoith D, Roberts CT Jr (2003) The insulin-like growth factor system and cancer. Cancer Lett 195:127–137

    Article  CAS  PubMed  Google Scholar 

  • Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441–464

    Article  CAS  PubMed  Google Scholar 

  • Matheny RW Jr, Carrigan CT, Abdalla MN, Geddis AV, Leandry LA, Aguilar CA, Hobbs SS, Urso ML (2017) RNA transcript expression of IGF-I/PI3K pathway components in regenerating skeletal muscle is sensitive to initial injury intensity. Growth hormone & IGF research: official journal of the Growth Hormone Research Society and the International IGF Research Society 32:14–21

    Article  CAS  Google Scholar 

  • Mauras N, Haymond MW (2005) Are the metabolic effects of GH and IGF-I separable? Growth hormone & IGF research: official journal of the Growth Hormone Research Society and the International IGF Research Society 15:19–27

    Article  CAS  Google Scholar 

  • Mueller AC, Cichewicz MA, Dey BK, Layer R, Reon BJ, Gagan JR, Dutta A (2015) MUNC, a long noncoding RNA that facilitates the function of MyoD in skeletal myogenesis. Mol Cell Biol 35:498–513

    Article  PubMed  PubMed Central  Google Scholar 

  • Pang KC, Frith MC, Mattick JS (2006) Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends in genetics : TIG 22:1–5

    Article  CAS  PubMed  Google Scholar 

  • Perkel JM (2013) Visiting “noncodarnia”. BioTechniques 54(301):303–304

    Google Scholar 

  • Sabourin LA, Rudnicki MA (2000) The molecular regulation of myogenesis. Clin Genet 57:16–25

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Li M, Sun Y, Cai H, Lan X, Huang Y, Bai Y, Qi X, Chen H (2016) The developmental transcriptome sequencing of bovine skeletal muscle reveals a long noncoding RNA, lncMD, promotes muscle differentiation by sponging miR-125b. Biochim Biophys Acta 1863:2835–2845

    Article  CAS  PubMed  Google Scholar 

  • Sunwoo H, Dinger ME, Wilusz JE, Amaral PP, Mattick JS, Spector DL (2009) MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res 19:347–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vizoso M, Esteller M (2012) The activatory long non-coding RNA DBE-T reveals the epigenetic etiology of facioscapulohumeral muscular dystrophy. Cell Res 22:1413–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner K, Hemminki K, Forsti A (2007) The GH1/IGF-1 axis polymorphisms and their impact on breast cancer development. Breast Cancer Res Treat 104:233–248

    Article  CAS  PubMed  Google Scholar 

  • Wang GQ, Wang Y, Xiong Y, Chen XC, Ma ML, Cai R, Gao Y, Sun YM, Yang GS, Pang WJ (2016) Sirt1 AS lncRNA interacts with its mRNA to inhibit muscle formation by attenuating function of miR-34a. Sci Rep 6:21865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23:1494–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wutz A, Gribnau J (2007) X inactivation Xplained. Curr Opin Genet Dev 17:387–393

    Article  CAS  PubMed  Google Scholar 

  • Zhang SF, Li XR, Sun CB, He YK (2012) Epigenetics of plant vernalization regulated by non-coding RNAs. Yi chuan Hereditas 34:829–834

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (31572380) and the National Natural Science Foundation of Tianjin (16JCZDJC33700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editor: Tetsuji Okamoto

Electronic supplementary material

Supplementary Table 1

(DOCX 15 kb)

Supplementary Table 2

(XLSX 243 kb)

Supplementary Table 3

(XLSX 110 kb)

ESM 1

(DOCX 3363 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, Y., Jin, C., Chen, M. et al. A lncRNA promotes myoblast proliferation by up-regulating GH1. In Vitro Cell.Dev.Biol.-Animal 53, 699–705 (2017). https://doi.org/10.1007/s11626-017-0180-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-017-0180-z

Keywords

Navigation