Skip to main content

Advertisement

Log in

Gingipain of Porphyromonas gingivalis manipulates M1 macrophage polarization through C5a pathway

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Gingipains secreted by Porphyromonas gingivalis (P. gingivalis, Pg) play an important role in maintaining macrophage infiltrating. And, this study is to evaluate effects of gingipain on M1 macrophage polarization after exposure to Porphyromonas gingivalis (P. gingivalis, Pg) and if these effects are through complement component 5a (C5a) pathway. Mouse RAW264.7 macrophages were exposed to gingipain extracts, Escherichia coli lipopolysaccharides (Ec-LPS), Pg-LPS with or without the C5aR antagonist: PMX-53 for 24 h. Then, gene expressions and protein of IL-12, IL-23, iNOS, IL-10, TNF-α, IL-1β, and IL-6 were determined by qRT-PCR and ELISA assays. Surface markers CD86 for M1 and CD206 for M2 were also evaluated by flow cytometry. The results show that gingipain extracts alone increased expressions of IL-12, IL-23, iNOS, TNF-α, IL-1β, and IL-6, but not IL-10. Gingipain extracts plus Ec-LPS decreased expressions of IL-12, IL-23, iNOS, TNF-α, IL-1β, and IL-6 in which Ec-LPS induced increase. For gingipain extracts plus Pg-LPS-treated RAW264.7, macrophages, gingipain extracts enhanced expressions of IL-12 and IL-23 in which Pg-LPS induced increase, but not iNOS and IL-10 while gingipain extracts decreased expressions of TNF-α, IL-1β, and IL-6 in which Pg-LPS induced increase. Interestingly, PMX-53 increased expressions of IL-12, IL-23, and iNOS when RAW264.7 macrophages were treated with gingipain extracts plus Ec-LPS or Pg-LPS and PMX-53, while PMX-53 decreased expressions of TNF-α, IL-1β, and IL-6. Changes of CD86-positive macrophages were consistent with cytokine changes. Our data indicate that gingipain is a critical regulator, more like a promoter to manipulate M1 macrophage polarization in order to benefit P. gingivalis infection through the C5a pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  CAS  PubMed  Google Scholar 

  • Akiyama T, Miyamoto Y, Yoshimura K, Yamada A, Takami M, Suzawa T, Hoshino M, Imamura T, Akiyama C, Yasuhara R, Mishima K, Maruyama T, Kohda C, Tanaka K, Potempa J, Yasuda H, Baba K, Kamijo R (2014) Porphyromonas gingivalis-derived lysine gingipain enhances osteoclast differentiation induced by tumor necrosis factor-α and interleukin-1β but suppresses that by interleukin-17A: importance of proteolytic degradation of osteoprotegerin by lysine gingipain. J Biol Chem 289:15621–15630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assuma R, Oates T, Cochran D, Amar S, Graves DT (1998) IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis. J Immunol 160:403–409

    CAS  PubMed  Google Scholar 

  • Bainbridge BW, Coats SR, Darveau RP (2002) Porphyromonas gingivalis lipopolysaccharide displays functionally diverse interactions with the innate host defense system. Ann Periodontol 7:29–37

    Article  PubMed  Google Scholar 

  • Bostanci N, Belibasakis GN (2012) Porphyromonas gingivalis: an invasive and evasive opportunistic oral pathogen. FEMS Microbiol Lett 333:1–9

    Article  CAS  PubMed  Google Scholar 

  • Curtis MA, Aduse-Opoku J, Rangarajan M (2001) Cysteine proteases of Porphyromonas gingivalis. Crit Rev Oral Biol Med 12:192–216

    Article  CAS  PubMed  Google Scholar 

  • Darveau RP (2010) Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol 8:481–490

    Article  CAS  PubMed  Google Scholar 

  • Deng S, Jepsen S, Dommisch H, Stiesch M, Fickenscher H, Maser E, Chen H, Eberhard J (2011) Cysteine proteases from Porphyromonas gingivalis and TLR ligands synergistically induce the synthesis of the cytokine IL-8 in human artery endothelial cells. Arch Oral Biol 56:1583–1591

    Article  CAS  PubMed  Google Scholar 

  • Edwards JP, Zhang X, Frauwirth KA, Mosser DM (2006) Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 80:1298–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eke PI, Dye BA, Wei L, Slade GD, Thornton-Evans GO, Borgnakke WS, Taylor GW, Page RC, Beck JD, Genco RJ (2015) Update on prevalence of periodontitis in adults in the United States: NHANES 2009 to 2012. J Periodontol 86:611–622

    Article  PubMed  PubMed Central  Google Scholar 

  • Fokkema SJ (2010) Peripheral blood monocyte responses in periodontitis. Int J Dent Hyg 10:229–235

    Article  Google Scholar 

  • Gordon S, Martinez FO (2010) Alternative activation of macrophages: mechanism and functions. Immunity 32:593–604

    Article  CAS  PubMed  Google Scholar 

  • Graves D (2008) Cytokines that promote periodontal tissue destruction. J Periodontol 79:1585–1591

    Article  CAS  PubMed  Google Scholar 

  • Grenier D, Tanabe S (2010) Porphyromonas gingivalis gingipains trigger a proinflammatory response in human monocyte-derived macrophages through the p38α mitogen-activated protein kinase signal transduction pathway. Toxins (Basel) 2:341–352

    Article  CAS  Google Scholar 

  • Guo Y, Nguyen KA (2000) Potempa J (2010) dichotomy of gingipains action as virulence factors: from cleaving substrates with the precision of a surgeon’s knife to a meat chopper-like brutal degradation of proteins. Periodontol 54:15–44

    Article  Google Scholar 

  • Hajishengallis G, Lambris JD (2010) Crosstalk pathways between toll-like receptors and the complement system. Trends Immunol 31:154–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajishengallis G, Liang S, Payne MA, Hashim A, Jotwani R, Eskan MA, McIntosh ML, Alsam A, Kirkwood KL, Lambris JD, Darveau RP, Curtis MA (2011) Low abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe 10:497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajishengallis G, Darveau RP, Curtis MA (2012) The keystone-pathogen hypothesis. Nat Rev Microbiol 10:717–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holden JA, Attard TJ, Laughton KM, Mansell A, O’Brien-Simpson NM, Reynolds EC (2014) Porphyromonas gingivalis lipopolysaccharide weakly activates M1 and M2 polarized mouse macrophages but induces inflammatory cytokines. Infect Immun 82:4190–4203

    Article  PubMed  PubMed Central  Google Scholar 

  • Jain S, Coats SR, Chang AM, Darveau RP (2013) A novel class of lipoprotein lipase-sensitive molecules mediates TLR2 activation by Porphyromonas gingivalis. Infect Immun 81:1277–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kendall HK, Marshall RI, Bartold PM (2001) Nitric oxide and tissue destruction. Oral Dis 7:2–10

    Article  CAS  PubMed  Google Scholar 

  • Kolev M, Le Friec G, Kemper C (2014) Complement--tapping into new sites and effector systems. Nat Rev Immunol 14:811–820

    Article  CAS  PubMed  Google Scholar 

  • Krausgruber T, Blazek K, Smallie T, Alzabin S, Lockstone H, Sahgal N, Hussell T, Feldmann M, Udalova IA (2011) IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol 12:231–238

    Article  CAS  PubMed  Google Scholar 

  • Lam RS, O’Brien-Simpson NM, Lenzo JC, Holden JA, Brammar GC, Walsh KA, McNaughtan JE, Rowler DK, Van Rooijen N, Reynolds EC (2014) Macrophage depletion abates Porphyromonas gingivalis-induced alveolar bone resorption in mice. J Immunol 193:2349–2362

    Article  CAS  PubMed  Google Scholar 

  • Lawrence T, Natoli G (2011) Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 11:750–761

    Article  CAS  PubMed  Google Scholar 

  • Maekawa T, Krauss JL, Abe T, Jotwani R, Triantafilou M, Triantafilou K, Hashim A, Hoch S, Curtis MA, Nussbaum G, Lambris JD, Hajishengallis G (2014) Porphyromonas gingivalis manipulates complement and TLR signaling to uncouple bacterial clearance from inflammation and promote dysbiosis. Cell Host Microbe 15:768–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 43:109–142

    CAS  PubMed  Google Scholar 

  • Moskow BS, Polson AM (1991) Histologic studies on the extension of the inflammatory infiltrate in human periodontitis. J Clin Periodontol 18:534–542

    Article  CAS  PubMed  Google Scholar 

  • Pathirana RD, O’Brien-Simpson NM, Veith PD, Riley PF, Reynolds EC (2006) Characterization of proteinase-adhesin complexes of Porphyromonas gingivalis. Microbiology 152:2381–2394

    Article  CAS  PubMed  Google Scholar 

  • Pizzi M, Boi M, Bertoni F, Inghirami G (2016) Emerging therapies provide new opportunities to reshape the multifaceted interactions between the immune system and lymphoma cells. Leukemia 30:1805–1815

    Article  CAS  PubMed  Google Scholar 

  • Popadiak K, Potempa J, Riesbeck K, Blom AM (2007) Biphasic effect of gingipains from Porphyromonas gingivalis on the human complement system. J Immunol 178:7242–7250

    Article  CAS  PubMed  Google Scholar 

  • Shaker O, Ghallab NA, Hamdy E, Sayed S (2013) Inducible nitric oxide synthase (iNOS) in gingival tissues of chronic periodontitis with and without diabetes: immunohistochemistry and RT-PCR study. Arch Oral Biol 58:1397–1406

    Article  CAS  PubMed  Google Scholar 

  • Sheets SM, Potempa J, Travis J, Casiano CA, Fletcher HM (2005) Gingipains from Porphyromonas gingivalis W83 induce cell adhesion molecule cleavage and apoptosis in endothelial cells. Infect Immun 73:1543–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stathopoulou PG, Benakanakere MR, Galicia JC, Kinane DF (2009) The host cytokine response to Porphyromonas gingivalis is modified by gingipains. Oral Microbiol Immunol 24:11–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugawara S, Nemoto E, Tada H, Miyake K, Imamura T, Takada H (2000) Proteolysis of human monocyte CD14 by cysteine proteinases (gingipains) from Porphyromonas gingivalis leading to lipopolysaccharide hyporesponsiveness. J Immunol 165:411–418

    Article  CAS  PubMed  Google Scholar 

  • Tancharoen S, Matsuyama T, Kawahara K, Tanaka K, Lee LJ, Machigashira M, Noguchi K, Ito T, Imamura T, Potempa J, Kikuchi K, Maruyama I (2015) Cleavage of host cytokeratin-6 by lysine-specific gingipain induces gingival inflammation in periodontitis patients. PLoS One 10:e0117775

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanek M, Hawkins LD, Gusovsky F (1994) Coupling of the C5a receptor to Gi in U-937 cells and in cells transfected with C5a receptor cDNA. Mol Pharmacol 46:832–839

    CAS  PubMed  Google Scholar 

  • Wang M, Krauss JL, Domon H, Hosur KB, Liang S, Magotti P, Triantafilou M, Triantafilou K, Lambris JD, Hajishengallis G (2010) Microbial hijacking of complement-toll-like receptor crosstalk. Sci Signal 3:ra11

    PubMed  PubMed Central  Google Scholar 

  • Wilensky A, Tzach-Nahman R, Potempa J, Shapira L, Nussbaum G (2015) Porphyromonas gingivalis gingipains selectively reduce CD14 expression, leading to macrophage hyporesponsiveness to bacterial infection. J Innate Immun 7:127–135

    Article  CAS  PubMed  Google Scholar 

  • Wingrove JA, DiScipio RG, Chen Z, Potempa J, Travis J, Hugli TE (1992) Activation of complement components C3 and C5 by a cysteine proteinase (gingipain-1) from Porphyromonas (Bacteroides) gingivalis. J Biol Chem 267:18902–18909

    CAS  PubMed  Google Scholar 

  • Xu Y, Tian Z, Xie P (2014) Targeting complement anaphylatoxin C5a receptor in hyperoxic lung injury in mice. Mol Med Rep 10:1786–1792

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Cindy Clark, NIH Library Editing Service, for reviewing and editing the manuscript. This study was supported by funding from the Jilin Provincial Science & Technology Department (20150101076JC), the Graduate Innovation Fund of Jilin University (2016107), and the National Natural Science Foundation of China (81570983).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixian Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Yu, H., Liu, X. et al. Gingipain of Porphyromonas gingivalis manipulates M1 macrophage polarization through C5a pathway. In Vitro Cell.Dev.Biol.-Animal 53, 593–603 (2017). https://doi.org/10.1007/s11626-017-0164-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-017-0164-z

Keywords

Navigation